AD-AI111 SB1 OHIO STATE UNIV COLUMBUS COMPUTER AND INFORMATION SC-=ETC F/6 972
THE IMPLEMENTATION OF A MULTI-BACKEND DATABASE SYSTEW (MOBS). LI
JAN B2 D S KERR, A OROOJIs Z SHI NO0O14=75-C~0573

UNCLASSIFIED OSU=CISRC-TR=82-1 N

o

N

L

] g
= flee

12 liis nie

’

TECHNICAL REPORT SERIES

p— et . wi . ‘ ! - ; - proweny r—

CURIPUTER E
JNFDHP’IHTJ[]N

aCIENCE
RESEARCH CENTER . ;|

i
i
i
L

iy
y___ 4

~

82 & v
L

THE OHIO STATE UNIVERSITY COLUMBUS, OHIO

B T o T

(0SU-CTSRC-TR-82-1) @

THE IMPLEMENTATION OF A MULTI-~BACKEND
DATABASE SYSTEM (MDBS):
PART T ~ SOFTWARE ENGINEERING STRATEGIES
AND EFFORTS TOWARDS A PROTOTYPE MDBS

by

Douglas S. Kerr
Ali Orooji
Zong-Zhi Shi
Paula R, Strawser

Work performed under
Cont .act N00014-75-C-0573

Office of Naval Research

Computer and Information Science Research Cenéer
The Ohio State University
Columbus, OH 43210
January 1982

od for pubﬁc reloas®;

Approv Unlimited |

Dietribution

S - . . Y e E) 7

SECURITY CLASSIFICATION OF THIS PAGE (Whon Date Lntored) =

L= , READ INSTRUCTIONS
REPORT DOCUKENTATION PAGE BEFORE, COMPLETING FORY
1. REPORT NUMHER 2. GOVT ACCESSION NO.| 3. RECIFIENT'S CATALOG NUMECER
0SU-CISRC-TR-82-1 b “ v
-1213981
4. YITLE (and Subtitle) A S. TYPE OF REPORT & PERIOD COVERED

"The Implementation of a Multi-Backend Database

System (MDBS): Part I - Software Engineering Technical Report

Strategies and Efforts Towards a Prototype MDBS" §.. PERFORMING ORG. REPORT NUMBER
]
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Douglas S, Kerr Zong-Zhi Shi
Ali Orooji Paula R. Strawser N00014-75-C-0573
]
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS
Office of Naval Research

Information Systems Program 4115-A1 4

Arlington, Virginia 22217
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

January 1982
13. NUMBER OF PAGES

156

14, MONITORING AGENCY NAME & ADDRESS(I!L dilferent from Controlling Otlice) 15. SECURITY CLASS. (of this reporty

it

15s. DECL ASSIFICATION ' DOWNGRADING L
SCHEOULE
!
16. DISTRIBUYION STATEMENT (of this Report)
Scientific Officer DDC New York Area DISTRIBUTION STATEMENT A

ONR BRO ONR 437

ol o

Approved for public release;

ACO ONR,, Boston Distribution Unlimited
NRL 2627 ONR, Chicaco

ONR 1021P ONR, Pasadena i

17. DISTRIBUTION STATEMENT (of the abstract entcred in Block 20, it difterent from Report)

18. SUPPLEMENTARY NOTES

backend database system, database system implementation, 1.18e computer,
database machine, software engineering, database.

ZO.ﬁSTRACT (Continue on reverss side If nccessary and identify by block number)
backend multi-minicomputer database system, known as MDBS, has been proposed.

MDBS utilizes one minicomputer as the master (or controller) and a varying number,
of minicomputers as slaves (or backends) which are configured in a novel and paral-
lel fashion. MDBS 1s primarily designed to provide for database growth and per- -
formance enhancement by the addition of identical backends. The software archi-
tecture allows the backend addition without the need of new programming and re-
programming. Instead, the backend system software is replicated on the new back-
onds for concurrent and parallel operations which in turn allow the database to ;

DD ‘:2:“,", 1473 EOITION OF 1 NOV 65 IS ODSOLETE

CE/LIMTY £ ACLIT AT IAMN AL TUIC DAART 2N e Nata Bnrncad

l 19. KEY WORODS (Continue on reverse side il necessary and identily by dlock number)

‘ -

;!CU'NTY CLASSIFICATION OF THIS PAGE(When Dets Fntcred)
grow and the performance to improve without an increase in software complexity.

Prototypes of MDBS are being implemented in order to carry out design verifi~
cation and performance evaluation of MDBS. The types of design verification and
performance evaluation of MDBS to be conducted are discussed in the report. The
prototypes, will be developed in versions starting with a very simple version, i.e.,
MDBS-I, that is described in detail in this report. Four more versions are en-
visioned. The rationale for each of the subsequent versions is also given.

As the first in a series of reports on the implementation, this report dis-
cusses the choice of hardware and operating system software. It also discusses
the choice of the system programming language. . . — B

The project is being used as an experiment in implementation methodologies and
software engineering techniques, Thus, the report discusses the methodologies and
techniques used, including a modified chief~programmer-team organization, struc-
tured walkthrough, data and service abstractions, a formal systems design language,
and structured coding. The choice of a 'black-box' testing strategy is also dis-
cussed.

The MDBS-I software system architecture is described in some detail. 1In
particular, the portion of the system which processes the information about the
database, i.e., the directory data, is described. 1In order to use a database that
already exists, a subsystem to convert and load the database will be provided. The
database load subsystem is therefore described. Finally, in order to facilitate
performance evaluation experiments, a program to generate test data is provided.

The final section of the report provides a preliminary discussi®n of alter-
native approaches for the operating system interface. Both a message-oriented
approach and a procedure-oriented approach are examined for the purpose of sup-
porting concurrency control of MDBS which is to be incorporated in the second
version of MDBS, i.e., MDBS~IT.

The appendices contain the detailed designs for the directory management sub-
system, the database load subsystem and the test data generation program. Later
reports will describe subsequent versions of the multi-backend database system,
namely, MDBS-II, MDBS-TII, MDBS-IV and, MDBS-V.

Nris GRARI
pTIC 1%

¢ Ur.annonieod []9;(/
: Justificqt\an;kmmw A/

B,

\ B’ ol

Accoséié; F95j:i:%;Zt:]
O

.,—’—‘——
Distributionliﬁ .

A;ailahtllty Codqg‘
b= snnil andfor
Epeciul

Antea o M ndhai

SECURITY CLASSIFICATION OF THIS PAGE(When Dote Entered)

4 s ks

‘ PAGE 1ii1

TABLE OF CONTENTS

LIST OF FIGURES.uevoeveosoosssvasnossossensnsoonsocsonsnonsensssess 1X
PREFACE. . cctcenosnesseasoesssnsasesssosssesscsssssnssntsnnassnennns X
1. AN INTRODUCTION TO HIGH-PERFORMANCE AND
GREAT-CAPACITY DATABASE SYSTEMS...:eueesvsacevscsooccosasocaansas 1
1.1 Multi-Backend Database System Design Goals....ceccevenneess 2
1.1.1 De8ign IB8UEB.cecciesesosnscrsnssssacncacncsaannannene 3
1,1.2 Solutions for a Multi-Backend Database
System ArchitectuUre..ceesecececcscsnersccennnasonnenss 4
1.1.3 Distribution of Request Execution Among
Controller and BackendS...eceeeoveresescocasansonases 9
1.2 Why Implement This System?....ccceeeserseccscccscoccasncens 15
1.2.1 Validation of Simulation ResultS8.....:ccecececcaeeens 15
(A) System Evaluation with Program-Gemerated
Databases..ccvieeeensccsessceesseccnssccsarsannnse 16
(B) System Evaluation with Actual
Databases..ceecencreosenecsescncencsnesssanasassss 16
1.2.2 Towards a Methodology for Database
Applications ClassificationN.eescsccccsesesncecsacsees 16
1.2.3 Bench-Marking the System Performance....ceeeseeaeees. 17
1.3 The Implementation Strategy — What and Why....ecveeveeece.. 18
1.3.1 Version I - A Very Simple System: Single
Mini Without Concurrency Control and With
Simplified Directory Management......eeececeevecescs. 18
1.3.2 Version II - A Simple System: Single Mini With
Concurrency Control..eeceecsevcscacessscscnensesscans 18
1.3.3 Version III - The First "Real" System :
Multiple Minis With Concurrency Control...cecoveesee. 19
1.3.4 Version 1V - The Real System With "Good"
Directory Management...cecceeeescasssncscasssccnaaess 19
1.3.5 Version V - Full System With All the

Designed Features Included.cccviscnerenncsnnceceaness 19

PAGE 1iv

1.4 The Organization of the Rest of the Report......cci0eeeeeee 19
1.4.1 Preparations for the First Effort of the
Laboratory for Database Systems Research..,......c.... 20
1.4.2 Software Engineering Approaches to the
First Effort...ceevieecoccacscscanssscascacsascnsnnssas 20
1.4.3 The Implementation StatUB...cevcecencoscssvscssssness 20
2, THE PROJECT PLANNING AND THE IMPLEMENTATION
EFFORT AND STRATEGY..:.cececercososacascasancosansaonnsanscnces 21

o e vt 8

2.1 The Choice of Hardware and Systems Software.......eeocoeees. 21
2.1.1 The PDP11/34 vs. the PDP11/44 and the
j PDP11/70 vs. the VAX11/780...c000vvucenns cresessnanes 22
2.1.2 The Systems Programming Language...ccoceesoccesecasss 23
(A) The Bliss Language and Its
COMPilerS.ceeeecescesscssenssosensnssnoansnsareaes 24

(B) The C Language and Its Programming

Development Environment...v.oeeeeeceocscssssceaass 25
(C) The MAINSAIL Language and Its
i Relationship to the Other Languages.........oc... 26
: (D) Why Do We Choose the C Language?.....coceeeveeoee. 26
2.1.3 The Operating SyStemS.escesesosenscesncnesocccsncnan e 27
(A) The UNIX Operating SySteM.uv.cocoeeeeceeaeancasnes 27
(B) The RSX1l Operating SystemM.u.ceceeenseeneesosease 28
(C) Why Do We Choose the UNIX Operating
System for the Development Effort
and RSX11l for the Run—-time Effort?........c.c.... 28
2.2 The "How" of the Implementation Strategy...e.eeeeececcscses 29
2.2.1 Team Organization and Monitoring the
Development Effort.....ccececencesecccccsceonecssanas 29
(A) A Modified Chief-Programmer-Team
OrganizatioN..ccseseecccaccsoscascosnsssnsnassnssncs 30
(B) The Structured Walkthrough,...eeevoeevevesnseoses 32
2.2.2 The Design and Coding Stages of the
MDBS Life Cycle..ciceacsoseveotoceasocessasnavsssonea 32
(A) A Top-Down Design Strategy and the

Use of Data AbstractioN..e.iveeesccscoscnssessness 34

2.3

3.2

3.3

. (B) A Formal Systems Specification
Language (SSL)..cescececnasccccosassnsscccnscsnnss
(C) A Practice of Structured Coding...cceceveccoesoss
2.2.3 A "Black-Box" Testing ApProach...ccesecceescacceccncs
2.2.4 A Uniform Documentation Standard...c.ceeeeseeccsccsne
A RetroOBPECLiVE.essssvseccassssosscscssasesssssssssscssoscnnsns
2.,3.1 Evaluating the Hardware and the Systems
SO ftWAre e ceesaescsesacsessenssccsccccsnnccnncnscasnans
2.3.2 Evaluating the Software Engineering
EXPErieNnCe.cscecsscesssscacsonssoncscccssoscsasnosonssns
DESIGN AND IMPLEMENTATION OF MDBS VERSIONS.....cccvcevceass
The Data Model and the Data Manipulation Language........ -
3.1.1 Concepts and TerminOlogY.seeeeceeoocococeosnsoonoonns
(A) Three Kinds of Keywords....uoeeeeeeesecoscnassas ..
(B) Keyword PredicateB..eecessecsescecacsnsnssosasnns
(C) Three Types of DesSCriptOrS.eceecsccscconacananans
(D) Rules for Providing Descriptors.......... ceeseses
(E) The Relationship of Keywords and
DeSCripPtOrSeuesscecesssvonnoscossenssssssssasanes
(F) Query Conjunctions and Queries........ceeeeceases
3.1.2 The Data Manipulation Language (DML).....cccceceennns
(A) Retrieve ReqUEBLB..everssvassacsscscasescsssannas
(B) Insert ReqUestS...eccesesessessosnsccacasnnscnces
(C) Delete ReqUESBLS.veescsscscavsacsssscsossnassncese
(D) Update ReqUesStS...ecceeessecscscseassosssnccocssnns
3.1.3 Transactions and ConsistencieB..ccescscsecsrecesccces
The Notion of Record CluSterS.ceecscesscscoccsscessceessnnses
3.2.1 Cluster FOrmatioN....ceeeveeescsocsssenccancssccnnsns
3.2.2 Cluster Determination During Request Execution.......
(A) Inserting Records into ClusterS.....cceeeecccsnes
(B) Retrieving, Deleting and Updating Records
from CluBLErS.ceseceecnocassccssscasancssnsassnns
The Entire Process of Request Execution...cieeecececeaccene
3.3.1 Executing an Insert RequesBt....cceeeevecscnsassssanns

3.3.2 Executing a Retrieve RequeSt.ceccivesarossenrssseanna

3.3.3 Executing a Delete RequUeBticcececcccsscacnooscosscans

34
37
37
38
40

41

41
42
42
42
43
43
44
45

45
45
46

- 46

47
47
47
49
50
51
52
53

53
57
57
57
59

PAGE vi]

3.3.4 Executing an Update RequesSt..cevevessccseoscsosnassaas 60]
3.4 Directory Management..ceeeesesescsssnoscessssssscnasnssnses 02
3.4.1 The Input: Non-Insert Requests and Insert
REQUEBLB..cveuseesesearnacaasesesvescanccnssscscnsssns 02
(A) Four Directory Tables: The Descriptor—-to-
Descriptor~-Id Table (DDIT), The Attribute
Table (AT), The Cluster Definition Table
(CDT) and The Cluster-ld-to-Next-Backend :
Table (CINBT).ceeveuesnoneesonncaccnsonsassssnass 03

(B) Three Phases of Processing: Descriptor

4

4
Search, Cluster Search and Address 3
GeneratioN...evescccosnsessessescssnsnssocasancss 06]

(C) The Choice of a Processing Strategy for the

Controller and the BackendS...eececececsasccaanss 06

(1) The Fully-Duplicated Strategy.secesscescassss 67
(2) The Descriptors-Division-Within-
Attribute Strategy..ccecseseecscceccasancaaes 67
(3) The Fully-Replicated Strategy.ececescscaseees 67
3.4.2 The Use of Abstractions and Tables for
Implementation..sceeeceecsccsscosocnsasscscnacascsesas 68
(A) Two Data Abstractions for Descriptor Search...... 69
(B) The Difference Between Descriptor Sets and
DeSCriptOr GrOUPS.csecevenssvsscssscnsosssascssses 69
(C) The Generation of the Descriptor~id Groups
for a ReqUest.ceecnessensnessacnsscsacrscarsanees 09
(D) A Service Abstraction for Passing
Descriptor-id Groups to Cluster Search......c.eas 71
(E) A Data Abstraction and Three Directory
Tables for Cluster Search and Address
GeneratioN..cecessscesassesscsnsssasasnccssasansa 71
(F) A Typical Directory Management Sequence of
Actions for an Insert Request......ecceerencrssss 73

(G) A Typical Directory Management Sequence of

Actions for a Non-insert RequeSt...cceoeesseesses 13

PAGE vii

4. LOADING THE DATABASE....ecsceoeusncnccsssansscsnscesecesccvannes 76

4.1 Three Directory Tables for Loading...eecvessececcececaccass 76

4.2 Four Phases of Database LOAdiNg..eceeceeccoccccvsocaceossesaa 16

4.2.1 The Database Definition Phase....cccecentecsccoscnacs 76

‘ 4.2.2 The Record Preparation Phase....ccecevencsrcaceoscnaas 79
4.2.3 The Record Clustering PhaS€..ceeccscceceenccacccnesaes 719

indaies

4.2.4 The Record and Table Distribution Phase.......cceeve. 79

4.3 The Implementation StatUSB.....ceessscesaccssvacsosssccessss 80

5. THE TEST FILE GENERATION....cccvseoveccacocsssvaccassseosssssss 8l
5.1 Three Types of Test Datad.e-cececeeeerssesssosscsssscssnsasses B8l

5.2 Random Test Data vs. Realistic Test Dat@...c.eeveovecececeans 81

5.3 Steps in Test File GeneratioN...ccessesccesscscocccescsnssss B2
5.4 The Relationship of the Package to Testing Strategies

and Performance Evaluation ExperimentsS...ecceesenccsces ces. 82

5.5 Current Status of the Package.....ieavesescscecscacoscecscasa 83

6. PLANS FOR THE NEXT MDBS VERSIONS.......0cvernnsesenccccannsenas B

6.1 Interfacing with Operating Systems......... csesasscsscseecss 84

6.2 Two Kinds of Interfacing ApproachesS...iccccceveecsscscecasss 84

6.2.1 Concurrency Control in MDBS-II using
Message~oriented Approach...c.cceeeveescesscnsscnass. 86
6.2.2 Concurrency Control in MDBS-II using
Procedure~oriented Approach..eeveccecsccesescacceeanas 86
REFERENCES ... vcteesocnsssssssacssssacsccssncncsssasassssssnnsass 90
APPENDIX A: HOW TO READ AND FOLLOW THE PROGRAM
SPECIFICATIONS..vueveenccoccseasonsancsccnsessncnsseanse 92

A.]l Parts within an AppendiX....ceeceesecesavesascovoccnssasnnss 92
A.2 The Format of 8 Part..cc.eevctcecencesscscsosansnsosencncnss 92
A.3 Documentation Techniques for the Part.....ceeeveeeesssssees 93
APPENDIX B: THE SSL SPECIFICATION FOR TEST FILE
GENERATION..cioeencccnossscocassconocaseancsscennsasses 94

B.l1 Part I - Generating Random Test Data Strings..e.eeeceesc.. 94

B.2 Part II - Generating Realistic Test Data Sets....ccceeceee. 99
APPENDIX C: THE SSL SPECIFICATION FOR DATABASE LOAD,....veceeasnes 107 (
C.l Part I - Database Load Subsystem.......eocvessvesesessscss 107

C.2 Part Il - Record Template Module...sceesseosnvcsassccncanss 130

PAGE wviii

APPENDIX D: THE SSL SPECIFICATION FOR DIRECTORY
_ MANAGEMENT .. cvoccoeesnsoncescosossnnsasccnsncacsannses 133
] D.1 Part I - The Top Level of Directory Management........... 133
! D.2 Part II - The Service Abstraction (DIRINT).,...ceoeevseass. 136
i D.3 Part III - The Data Abstraction for Attribute Table........ 139
D.4 Part IV - The Data Abstraction for
Descriptor-to—Descriptor-Id Table..veeseesseeoes. 140
D.5 Part V - The Data Abstraction for Cluster-Definition

Table..eeeeeceoosasososssnnassaceccssaccnssncnoes 142

Figure
Figure

Figure

Figure

Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure

Figure

Figure

10

11

12

13

14

15

16

17

18

19

LIST OF FIGURES

The MDBS Hardware Organization

Execution Phases of a Retrieval Request . . .

Execution of a Retrieval Request in the Presence

of Access Control and Concurrency Control . .

Overview of Directory Management as Seen From
The i-th Backend « . . . o . .

Record Processing Function
Modes of MDBS Operations + « . .

The Organization of the MDBS Design and
Implementation Teams . o« . ¢« v ¢« ¢ ¢ o v o o

A Sample Walkthrough Report
A SSL Specification of a Program Procedure . .
A Sample Procedure Hierarchy

A Sample of The Cluster Definition Table (CDT)
The Cluster-Id-To-Next-Backend Table (CINBT) .
The Descriptor-To-Descriptor-Id Table (DDIT) .

The Attribute Table (AT) and its Relationship
o DDIT . & v & v v v vt s e s e e e e e e

A Sample Request-Descriptor-Id Table (RDIT)
An Example of DT, DTCM and ECDT
Four Phases of Database Loading

The Message-Oriented Design for Concurrency
Control in MDBS-TIT ¢ ¢ & o &« &« & o o &

The Procedure-Oriented Design for Concurrency
Control im MDBS-TT « « ¢ ¢« & + .

Page

10

12
13

14

31
33
36
39
54
58

64

72
74

77

87

&8

Py

ii
%
!

SNl BN I Tas LW oeme S R .. ol W R R e s e

PREFACE

We would like to thank all those who have helped with this project. In
particular, the whole effort is based on the design and analysis developed by
Jai Menon. (Now, Dr. Jai Menon of IBM Research Laboratory, Sam Jose.) He
also provided much help in the detailed designs that we have documented here-
in. Tamer Ozsu was involved in our initial design efforts, before he left
the project. Two Visiting Scholars, Xin-Gui He and Masanobu Higashida, who
recently joined our project, helped with the program testing. Three wunder-
graduates provided programming support: Steve Barth, Julie Bendig and Ray
Browder. Several graduate students contributed background material which was
necessary for making our design decisions: José Alegria, Tom Bodnovich, and
David Braun. Finally, we would like to thank Prof. David K. Hsiao for the

leadership and inspiration he has provided to our project.

This work was supported by Contract N00014-75-C-0573 from the Office of
Naval Research to Dr. David K. Hsiao, Professor of Computer and Information
Science, and conducted at the Laboratory for Database Systems Research of the
Ohio State University. The Laboratory for Database Systems Research of the
Ohio State University is funded by the Digital Equipment Corporation (DEC),
Office of Naval Research (ONR) and the Ohio State University (0SU) and con-
sists of the staff, graduate students, undergraduate students, Visiting Scho-
lars and faculty for conducting research in database systems. Dr. Douglas
S. Kerr, Associate Professor of Computer and Information Science is the Di-
rector of Laboratory. The research contract was administered and monitored
by the Ohio State University Research Foundation. This report is issued by

the Computer and Information Science Research Center (CISRC).

T e

[

1.0 AN INTRODUCTION TO HIGH~PERFORMANCE AND GREAT-CAPACITY DATABASE SYSTEMS

Traditionally, database management systems run as large software pack-
ages (e.g., TOTAL) on large host computers (e.g., IBM 3033). Such systems
have had problems with performance; 1i.e., as the database grows and the rate
of requests to the database system increases, the host computer performance
decreases. Instead of upgrading the host to a more powerful and expensive
model (say, IBM 3081) snd incurring a major system interruption, it has been
proposed [Cana74] to offload most of the database system software from the
host to a second computer system, known as the backend, thus freeing the ex-

isting host computer for other tasks.

One backend approach is to use a single minicomputer for the backend.
This approach can free up the host, thereby improving the system performance
for other tasks. However, if the database continues to grow and the rate of
requests continues to increase, this approach cannot solve the database per-
formance problem since the backend will soon be overloaded. Consequently,
its pertormance will be degraded just as the host”s would have been in the
traditional approach. Thus, overall performance of the host and backend will

be degraded. This approach is known as the single software backend approach.

A second approach to solving the database system performance problem is
to develop a special-purpose database machine with specially designed

hardware. However, the cost~effectiveness of this approach, known as the

hardware backend approach, has not yet been demonstrated.

A third approach is to use multiple mini-computers configured in a novel
and parallel way for performance improvement in order to allow for database
growth and for increases in the request rate. This approach also requires
the development of an innovative software design which allows the addition of
mini-computers of the same type and the replication of the software omn the
new mini-computers without major system interruptioms. Thus, it dces ot re-
quire the development of any new hardware, but only the development of a new
and replicatable software architecture and a new and parallel hardware
configuration. Because it allows the use of multiple mini-computers, this

approach will result in a multi-backend database system.

PAGE 2

In this report we describe the current status of the development of a
prototype of such a multi-backend database system known as MDBS. By a proto-
type we mean one that has enough of the functionality of the full system to
allow meaningful experiments to be conducted. However, some features that
would be essential for a full system would be omitted in order to simplify
the current implementation effort. The functionality provided and features

omitted will be described in later sections.

1.1 Multi-Backend Database System Design Goals

The major goals we are trying to achieve are to design a multi-backend
database system that allows the database to grow and the rate of requests to
increase while maintaining gcod overall performance. In particular, a “good"
multi-backend database system with high performance and great capacity should
have the following properties:

(1) Throughput improvement is proportional to the number of backends. In
other words, if the number of backends and disk drives is doubled, it
should be possible to nearly double the size of the database and to
nearly double the request rate on the database system.

(2) Response time is inversely proportional to the number of backends.
It should also be possible to neariy halve the average response time
by doubling the number of backends.

(3) System is extensible for capacity growth and/or performance improve-

ment . By extensibility of a multi-backend database system we mean

that upgrade of the system can be provided with no modification to
existing software and no new programming; no modification to exist-
ing hardware; and no major disruption of system activity when addi-
tional hardware is being incorporated into the existing hardware and

software.

This kind of extensibility is to be provided by designing a system with
one controller (i.e., the master mini-computer) and several backends (slave
mini~computers) where the design allows expansion by the addition of more
backends of the same type, instead of by the replacement of the present back-
ends with more powerful and expensive models. It also allows identical

software to run on each backend, including new backends added for expansion.

v g

PAGE 3

This kind of extensibility calls for a design which minimizes the role of the
controller of the backends so that it will not become a bottleneck after the

addition of only a few backends,

1.1.1 Design Issues

Three types of design issues are addressed: hardware issues, system is-—
sues, and software 1issues, They are discussed in detail in [Hsia8la] and
(Hsia8lb]. Here we will review the hardware and system issues and solutions
briefly. Since the software issues are closely related to our implementation
effort, we will discuss their solutions more elaborately in the next section.
In this chapter, definitions will be kept informal. More precise definitions
can be found in Chapter 3 or in the previously mentioned reports, 1i.e.,
[Hsia8la] and [Hsia81b].

The hardware issues include the problem of backend interconnection --

Should the backends communicate with each other via some kind of interconnec-
tion hardware? How can this interconnection be provided in a cost-effective

manner? The hardware issues also include the problem of database store

interconnection -- Should each disk be accessible by all the backends, by

only one backend, or by some but not all the backends?

Several system issues are addressed: Database placement ~- Should re-
lated records of a database be concentrated at one backend or should they be
distributed across several backends? If the records are to be distributed
across several backends, how should this distribution be done? Execution
mode —— should all backends process the same request in parallel or should
different backends process different requests concurrently? Directory
structure, placement, and management -— How should the auxiliary information
about the database be determined, organized and distributed among the back-

ends? Access control capability ——- What are the kind and granularity of the

access control and how should an access control mechanism be implemented?
Data model and manipulation language -- what data model should be supported

and what data manipulation language should be used?

- —

PAGE 4

The software issues include the problem of degree of concurrency --
Since the basic unit for processing is a request, should two or more requests
be processed concurrently? If requests are not processed concurrently, what
should be done when users submit groups (i.e., transactions) of requests?
Can the processing of these requests be interleaved? As a part of the con-

currency control issue the problem of consistency control and deadlock

avoidance should be addressed —— How are the same data values of the database
subject to concurrent processing by different requests to be kept consistent?
How is deadlock to be avoided in an enviromment with multiple requests and

concurrent processing?

1.1.2 Solutions for a Multi-Backend Database System Architecture

An overview of the resulting MDBS hardware organization is shown in Fig-
ure 1. The issue of backend interconnection is resolved by having the con-
troller and backends connected by a broadcast bus. The controller will
broadcast each request to all backends at the same time over this bus.
Furtrermore, there will be minimal broadcasting from one backend to the other
backends. The issue of database store interconnection is resolved by giving

each backend dedicated disk drives,

The issues of database placement and execution mode are resolved by dis-
tributing the data from each file across all the backends. Each backend will
then process the data from its own disk drives. Because each file is spread
across all the backends, all backends can now execute the same request in
parallel. Request execution at a backend is handled by having a queue of re-
quests at the backend. When a backend finishes executing one request it can
start executing the next request. In view of the execution mode, MDBS is a

multiple~instruction-and-multiple~data (MIMD) organizaton.

The data model chosen for the system is the attribute-based data model
[Hsia70]. 1In MDBS the database consists of files of records. Each record is
a collection of keywords, optionally followed by a record body. A keyword is
made of an attribute-value pair such as <SALARY,$12,000> where $12,000 is the
value of the attribute SALARY. A record body is a string of characters

ol

b,

one or more

Backend 1 disk drives

one Or more

Backend 2 disk drives

L0 0

To the
host
compute

one Oor more

Backend n disk drives

Broadcasting
bus

Figure 1. The MDBS Hardware Organization

.
) i st St

PRSP S

! | PAGE 6) “"‘!

not used by MDBS for search purposes. An example of a record without a
record body is shown below.
(<FILE,Employee>, <EMPLOYEE NAME,Smith>, <CITY,Columbus>,
<SALARY, $12,000>, <SERVICE,10>)
The first attribute-value pairs in all records of a file are the same. In

particular, the attribute is FILE and the value is the file name. For exam-

ple, the above record is from the Employee file.

For pertormance reasons, records are logically grouped into clusters
based or the attribute values and attribute value ranges in the records.
These values and value ranges are c»lled descriptors. For example, one clus-
ter might contain records for those employed in Columbus, making at least
$20,001 but not more than $25,000 and with at least 11 but not more than 15
years of service. Thus records of this cluster are grouped by the following ;
three descriptors:

(CITY=Columbus), ($20,001=<SALARY=<$25,000), (11=<SERVICE=<IS). , i

Record retrieval in MDBS, for example, is done by clusters. Thus finding

ey

records of employees in Columbus making between $21,000 and $22,000 per year {

and with 12 to 13 years experience would require the retrieval of records in

Loan S

the cluster just described. Other requests such as to find records of em-
ployees in Columbus making between $21,000 and $28,000 and with 12 to 13

years experience might require additional retrieval of records from other i

clusters than the one identified above. -

In order to allow efficient processing of requests, records in a cluster
are spread across all the backends., Thus each backend needs to search only
its portion of the cluster. Given a user request, there must be a way, of
course, first to determine which clusters to search and then to determine the j
location of records in a given cluster. To perform this task, MDBS utilizes ' i
available descriptor information. For example, given the previous request
for finding employees where

(C1TY=Columbus) and ($21,000=<SALARY=<$28,000) and (12=<SERVICE=<13)

MDBS first determines that two clusters must be searched, These are the

clusters identified by the two sets of descriptors:
{ (CITY=Columbus), ($20,001=<SALARY=<$25,000), (11=<SERVICE=<15) }
{ (CITY=Columbus), ($25,001=<SALARY=<$30,000), (11=<SERVICE=<15) }

o e N T s e RSV < TS . D —

PAGE 7

After the clusters are identified, MDBS must then determine the disk ad-
dresses of the clusters at each backend. Finally MDBS will cause each back-

end to retrieve from its disks the records so addressed.

The execution phases of a retrieval request are summarized in Figure 2.

Descriptor search determines the descriptors that correspond to the request.

In our example, there are four descriptors corresponding to the request;
namely,
(CITY=Columbus), ($20,001=<SALARY=<$25,000),
($25,001=<SALARY=<$30,000), (11=<SERVICE=<15).
In order to save space and to save processing time each descriptor is identi-

fied by a descriptor id. For example,

Descriptor Descriptor 1d
(CITY=Columbus) D15
($20,001=<SALARY=<$25,000) D125
($25,001=<SALARY=<$30,000) D126
(11=<SERVICE=<15) D250

Thus the output of the descriptor search phase is the Boolean expression of
descriptor ids
D15 and (D125 or D126) and D250 (1)
corresponding to
($20,001=<SALARY=<$25,000)
(CITY=Columbus) and or and (11=<SERVICE=<15)
($25,001=<SALARY=<$30,000)

which identifies two clusters.

The next phase, cluster search must take the Boolean expression in (1)

and actually determine the corresponding clusters. As with descriptors,

clusters are also identified by ids, known as cluster ids, for example

Descriptor lds Cluster Id
D1S, D125, D250 c17
D15, D126, D250 C22

PAGE 8
Directory
Management
From the
From the
available
descriptors, giveni ¢ From the From the
determine izscr ptor given cluster given From the
those S» h ids, addresses, given l
lw-descriptor ditermine t _:Ldetermine the..‘._determine _,J__addresses,_.q i
(actually sj ¢ uSteii addresses of which retrieve the :
descriptor (actually the records backends and required '
ids), which cluster ids), in those disks to records. ?
’ J whose records h .
correspond t may satisfy clusters. search.
the given the request.
request. .
Boolean
Retrieval Expression Cluster Disk
Request|Descriptor|of Cluster | Ids Address Addresses _|Record Results
*™ Search Descriptor| Search Generation Processin
Ids ‘

Qg Gemma—

——y

Figure 2. Execution Phases of a Retrieval Request

l
I

PAGE 9

The final two phases are address generation (to find the disk addresses,
e.g., A3546 and A3547, corresponding to each cluster id, e.g., C17) and

record selection (to retrieve the actual records so addressed).

Descriptor search, cluster search and address generation together form

the major portion of directory management.

Because all directory management is based on the concept of clusters, it

is also logical to design an access control capability based on clusters.

Thus cluster search is augmented by a cluster access control mechanigm,

The final design issue was the question of the degree of concurrency to

be allowed. Executing one request at a time at a backend will frequently
leave the backend”s CPU idle while waiting for a disk to access records.
Since the MDBS hardware organization provides multiple disk drives per back-
end, it is possible for a backend to support concurrent processing of re-
quests from different users. However a mechanism to control concurrent ac-
cess to data must then be provided. The mechanism used in MDBS is also cen-

tered on the concept of clusters. In particular, the concurrency control

mechanism will lock clusters to prevent conflicting access to the same

clustered data.

This section has described the general method used by MDBS in processing
a retrieval request. This processing is summarized in Figure 3. The next
section will show how this processing is divided among the controller and the

backends.

1.1.3 Distribution of Request Execution Among Controller and Backends

In the previous section, we mentioned how the database was distributed
across the backends. However, we did not discuss the placement of directory
data and the distribution of the processing required in directory management,
In order to minimize the time for directory management and to facilitate
record update, the directory data is duplicated at all backends. On the
other hand, the processing required for directory management is not duplicat~-

ed at each backend. The descriptor search phase, instead, is divided among

PAGE 10

original function r

R |
! | future function
) |

e o)

2uo o

Iy
L

Boolean
Retrieval Expregsion Disk :
Request | Descriptorfof o Cluster Address fAddresses_fRecord [Regults
Search Descriptor | Search - Generation Processing
Ids .
Cluster Authorized
1ds Cluster Ids,
Ready for Processing
| - r——-=-
Xigzzzr {Authorized 'Concurrency'
| ICluster Ids lControl
L Control L J
Figure 3. Execution of a Retrieval Request in the Presence

of Access Control and Concurrency Control

PAGE 11

the backends. Each backend must find only a subset of descriptor ids. It
then broadcasts its results to all the other backends. 1In Figure 4 we sum—
marize how directory management is performed at a backend. A retrieval re-
quest 1is received from the controller. Then the backend performs a descrip-
tor search on its portion of the request and broadcasts the resulting des-
criptor 1ids to the other backends. After the descriptor ids from all other
backends have been received, cluster search is used to determine the clus-
ters. Finally, address generation determines the local disk addresses for

records at that backend.

The backend can do more than just retrieve all the records im a cluster.
First, it can select those records that actually satisfy the request. For
example, the request to find records of employees in Columbus earning more
than $20,000 but not more than $28,000 and with more than 10, but not more

than 15 years experience, requires selecting records from the two clurters,

Those clusters are identified by
(CITY=Columbus) and ($20,001=<SALARY=<$25,000) and (11=<SERVICE=<15)
and
(CITY=Columbus) and ($25,001=<SALARY=<$30,000) and (11=<SERVICE=<I5).

All the records will be selected from the first cluster, but only recorda.

with SALARY=<$28,000 will be selected from the second cluster.

Often not all the data in a record is needed to respond to a request,
In this example, only the names of the employees might be required. Thus the
appropriate values must be extracted from the record. The other values may
be discarded. Although not shown in this example, MDBS can perform various
types of aggregate operations on a set of values instead of just returning
the raw values. An example would be to find the average salary of employees
who live in Columbus. Thus after selecting the appropriate records and ex-
tracting the salary values, MDBS would compute the average. The steps of

record processing are summarized in Figure 5.

Referring to Figure 6, the execution of a user request can now be sum-
marized as follows. The user submits a request to the host, which then
transmits that request, in an internal form, to the controller of MDBS. The

controller parses the request and then broadcasts it to the backends. The

e n

e s M ka5 ead

Retrieval Request from the Controller

"lll...l....l........................-.!.l..........llll'-...-.-.-ll!-lll------u.

PAGE 12
1l i The (1-1)-th Backend
—
m
Descriptors Descriptors Found
Found at the at all the other
i-th Backend Backends
are Broadcast
to all the
other Backends
The i-th Backend
U
Descriptorag—-"————‘All Clustegoy Local
s |DescriptogFound at escriptorhaseriptors/Clustedlids padres Addresses
" {Search this Search Search Cener- =~
ackend ation
AN
Descriptors Descriptors Found
Found at the at all the other
i-th Backend Backends
are Broadcast
to all the
other Backends
Y The (i+l)-th Backend
._—’.

Fligure 4., Overview of Directory Management
s Seen From The i-th Backend

a

PAGE 13

- Record Processing

[PPSR e TR DL

o

' Local Disk Record Records (Value Values Aggregate | Results
Addresses Selection Extractio Operationg——™
(from Directory
Management)

Figure 5. Record Processing Function

r i aa

P

PAGE 14
Host
]—— | MDBS
| Con-
troller,
~
% VN
yd \ . Parallel .
/ \ AN
/ \ N

N
Back~- .. . Back- Back~
end end end

[- [j

) Broadcast

Broadcast lMode

* Controller-to-all-backends operation (e.g., query)

* Backend-to-all-other-backends operations (e.g., transferring
descriptor ids)

Parallel Mode

+ Response-~of-each-backend-to-controller operations (e.g., forwarding
retrieved data)

Figure 6. Modes of MDBS Operations

l
l
|

Seairs - RS

e e ST L e e ot Ta e T e =

PAGE 15

backends determine their portion of the descriptor ids and broadcast the re-
sults to the other backends, Each backend determines the clusters that must
be searched and the corresponding local disk addresses. Then the appropriate
records are selected, values extracted and results sent back to the
controller. When the contriller has received the results from all the back-
ends, it performs any aggregate operation required and then forwards the

final results to the host for return to the user.

1.2 Why Implement This System?

The design of MDBS is based on extensive analysis of queueing models and
simulation studies of MDBS components. These results are included in
[Hsia8la] and [Hsia8lb]. This report is concerned with the implementation of
an MDBS prototype. We, therefore, will not repeat the expected performance
of MDBS as simulated and analyzed in those reports. These models and studies
are, of course, only approximations, We are implementing a prototype of MDBS
in order to conduct more accurate performance evaluation and more thorough

design validation.

1.2.1 validation of Simulation Results

The first reason to build a prototype system is to validate the simcia-
tion results. The main goal 1is to measure the extensibility of the system,
i.e., how does it perform as more backends are added? In particular, is the
pertormance gain proportional to the number of backends? If this proportion-
ality holds for a small number of backends, how many backends can be added
before no more improvement is possible? Can the response time, indeed, be
improved for the same size database by increasing the number of backends,
each with a smaller number of disk drives as is predicted by the simulation?
The simulation models used to develop the design predict improved performance
with an increase in the number of backends and the same amount of data. They
also predict constant performance with an increase in data, if the number of

backends is increased.

S b e -

- PR

iateesi ot AN onii . el

ol

PAGE 16

(A) System Evaluation with Program-Generated Databases

The first set of experiments will use test data tha. 1is generated by
programs and specified by experimenters, The record formats will be deter-
mined by the experimenter. The actual data will then be generated from dis-
tributions specified by the experimenter. For example, one file might have
10,000 records each with 10 fields. The value in the first field of a record
may be drawn from a uniform distribution on the interval [0,100]; the second

field of a record may be drawn from a predefined set of

values, while the
third field might come from a normal distribution, The number of records and

their formats can be varied in the experiments.

Requests will also be conmstructed in a similar way. This approach is
taken first because it 1is easy to perform these experiments. However, we
also intend to run experiments on actual databases borrowed from the Depart~

ment of Defense”s user community.

(B) System Evaluation With Actual Databases

The validation of the simulation will also use data taken from an actual
database. Thus the second step will be to obtain one or more actual data-
bases. Sets of "typical" requests will then be developed on the basis of the
data languages of the databases. These databases and sets of requests will
be used for a second set of experiments, It is hoped that such experiments
will provide more insight into how a multi-backend system might actually per-
form. Furthermore, it will provide insights into the relative performance of
the multi-backend system vs. a single-backend system and vs. a conventional

system.

1.2.2 Towards a Methodology for Database Applications Classification

After experimenting with several actual databases, our goal is to devel-
op a methodology for classifying database applications, With such a metho-
dology it should be easier to predict the performance of a new application on
an existing multi-backend system. Such a classification could also be used
in the redesign of the multi-backend system, since it would allow much wmore

accurate simulation of system performance. Right now, only two gross appli-

PAGE 17

cation classification schemes exist. One is to distinguish between
"query-intensive" and "update-intensive' applications. In the first case
most requests only seek information from the database, while in the second

case most requests require addition and modification to the database.

A second classification scheme involves the complexity of the queries.
For example, some queries are very simple, e.g., finding the address of the
employee whose employee number is 123456. Other queries are much more com-
plex, e.g., finding the names and addresses of all employees who live in Co-
lumbus, earn between $20,000 and $32,000 per year and have worked for the
company for at least 10 years. There are still more complex queries which
require rererence to more than one file. It seems likely that some desigas
will provide better performance on simple queries, while other designs will
provide better pertormance on more complex queriee. These classificatons
need to be made more precise. Still other classificaton schemes need to be

developed.

1.2.3 Bench-Marking the System Performance

A well-known method for comparing the relative performance of computer
systems 1s to compare the average execution time of a standard instruction
mix [Ferr78). One such mix, the Gibson mix [Gibs70], was derived from the
average relative usage of IBM 7090 CPU instructions in a scientific environ-
ment. Similarly, this approach has been applied to high-level programming
languages. One such mix, [Knut71], was collected for the average relative
usage of Fortran statements. Once such a mix has been developed, it can be
used to estimate the performance of a new computer system by first determin-
ing the execution time of each instruction type and then computing the

weighted average execution time for the typical mix of instructionms.

This same technique may be generalized and applied to the performance of
database systems. Corresponding to a standard CPU instruction mix would be a
mix of low-level database processing statements such as the requests provided
by MDBS. Corresponding to the high-level programming statement mix would be
a mix of high-level query language statements provided by a language such as

sQL [Astr7e6]}. The relative mix of MDBS requests or SQL statements would be

PAGE 18

determined by examining several typical database applications. This mix
could be used to estimate the performance of a new database system after the

execution time of each type of MDBS request or SQL statement is known.

1.3 The Implementation Strategy — What and Why?

It seems only reasonable to develop most systems in stages. For proto-
type systems such an approach seems even more important. Thus we plan to de-
velop several versions of MDBS. We chose to begin with an implemention of a

very simple system.

1.3.1 Version I - A Very Simple System: Single Mini Without Concurrency

Control and With Simplified Directory Management

The system we are now implementing is intended to be as simple as possi-
ble. The aim is to get something running so that we can gain some experience
with both the MDBS design and our new computer systems. Thus we have chosen
to simplify the design as much as possible. MDBS~I will execute only a sin-
gle request at a time. It will run on a single computer, i.e., a PDP11l/44.
There is no distinction made between the slave and master. In other words,
there is no separate controller, Directory management will be simplified by
storing all directory data in the main memory. There will be no concurrent
execution of requests. Since the whole system will run as a single operating

system process, the interface with the operating system will be minimized.

1.3.2 Version II - A Simple System: Single Mini With Concurrency Control

The second version will allow concurrent execution of requests, but will
still be restricted to a single mini. We plan to use the services of our op-
erating system to facilitate this concurrent processing. Thus we will use
the capability of creating independent concurrent processes which communicate
among themselves. These prucesses will execute in parallel so that MDBS-II
will be able to execute requests in parallel. This version will allow us to
gain experience with the problem of multiple processes and the problem of

concurrency control,

R v

ATy e

PAGE 19

1.3.3 Version III -~ The First "Real" System : Multiple Minis With Concur-

rency Control

After MDBS-II is working, we will transfer the system to our real envi-
ronment including a controller (i.e., VAX 11/780) and several backends (PDP
11/44s8). This transfer should be fairly easy, since the major changes re-
quired will be to repl#ce communications between processes in one computer by
communications between processes running on different computers. This ver-
sion will allow us to see how the interccmputer communication overhead is
going to affect system performance. This system, MDBS-III, will still not be
sufficient for a full MDBS, since it has a very simplified directory manage-
ment subsystem., However, it will allow us to begin preliminary testing of

the MDBS design.

1.3.4 Version IV - The Real System With "Good" Directory Management

This version will include a fully implemented directory management sub-
system utilizing the secondary memories., It will be a complete prototype
system, except for the lack of access control features, This system,
MDBS-IV, will be the one on which we will try to validate the simulation stu-

dies used in the development of the original design.

1.3.5 Version V - The Full System With All the Designed Features Included

The final version will incorporate access control in the backends and a

friendly user~interface in the controller or host computer.

The rest of this report summarizes the design and implementation deci-~
sions that have been made, the software engineering approaches that have been

selected and used, and the current status of the implementation.

Ca eamtmana -

"\

PAGE 20

1.4.1 Preparations for the First Effort of the Laboratory for Database Sys-

tems Research

This project marks the first implementation effort of the Laboratory for
Database Systems Research, Before the implementation effort can begin, it is
necessary to select the hardware to be used, both for the controller and for
the backends; the implementation language; and the operating systems. The
choices made and the rationale for the choices are discussed in the beginning

of Chapter 2.

1.4.2 Software Engineering Approaches to the First Effort

Because the development of the prototype MDBS is our first implementa-
tion effort, we have been using this development as an exercise in implemen-
tation techniques. The actual implementation of any software system goes
through several phases including specification, design, coding and testing.
At present, the specifications and high-level design of MDBS have already
been completed. We continue with the detailed design phase. Specific tech-
niques for the detailed design, coding and testing phases have been adopted.

These techniques are described in Chapter 2.

P W

1.4.3 The Implementation Status

The implementation of MDBS-I is well underway. We expect the entire 4
system to be operational in the spring of 1982, That implementation is
described in detail in Chapters 3, 4 and 5. The directory management portion
of the system is completed. We have also completed a utility, database load,

to pertorm the loading of a database. Finally, a package to generate files

of test data is also completed.

In addition to directory management, database load utility and the test
file generation package, some preliminary work has been done on the approach
to be taken for concurrency control. These preliminary results are discussed

in Chapter 6.

e

;
i
l

!

St

PAGE 21

2.0 THE PROJECT PLANNING AND THE IMPLEMENTATION EFFORT AND STRATEGY

Before any effort toward implementing the MDBS prototype system can
begin, many decisions are required. Project planners must choose the
hardware for the prototype system. In particular, they must decide upon the
minicomputers for the controller and the backends. Then the systems program-
ming language must be selected. Finally, the operating systems must be cho-
sen. The implementors must decide on an implementation strategy. They must
develop a plan not only for what is to be done, but also for how it is to be
done. The "what" of this strategy 1is discussed in Section 1.3, which
describes the five phases of the implementation strategy for MDBS. The "how"
of the strategy requires the selection of software engineering techniques to

be used in the implementation effort.

The primary goal of the implementation effort is to develop a prototype
of MDBS to be used in database systems research. Some future directions for
this research are presented in Section 1.2, Our goal also requires the
software development effort to generate reliable software in as short a time
period as possible without sacrificing the reliability and quality of the
sof tware. In succeeding sections of this chapter, we will document and ex-
plain the decisions made by the project planners and implementors during the
preparatory stages of the MDBS implementation effort. We will show how their
choices of hardware and systems software and software engineering techniques

are related tobthe goals of the implementation effort.

2.1 The Choice of Hardware and Systems Software

Project planners have to address three fundamental questions in prepara-

tion for the implementation effort:
(1) what kind of hardware should be used in the
multi-backend database system as depicted

earlier in Figure 17

(2) What systems programming language should be

selected for the MDBS development effort?

PAGE 22

(3) What operating systems should be used in order

to best support the MDBS features?

We will review the alternatives which the project planners considered, and

give the reasons for their choices.

2.1.1 The PDPl1/34 vs. the PDP11/44 and the PDP11/70 vs. the VAX11/780

Project planners want to select hardware which satisfies the require-
ments of the MDBS hardware organization at the smallest price. The MDBS
hardware organization is shown in Figure 1. That organization assumes that
the backends are connected by a broadcast bus. It also assumes that the ded-
icated disk drives at the backends have the capacity to support very large
databases. In addition to the MDBS design requirements, project planners
must consider that the development effort for an MDBS prototype will probably
require more computing power than the computing power required to run the

prototype.

Since the planners anticipated an equipment grant from Digital Equipment
Corporation (DEC), a proposal for DEC equipment was drafted. The proposal
suggests that the most cost-effective selection of hardware would be
PDP11/34s for backends and a PDP11/70 for the controller. At the time this
proposal was drafted, the latest generation of the corresponding DEC minicom-

puters was represented by the PDP11/44 and the VAX11/780.

In a multi~backend database system, performance is improved by increas-
ing the number of backends. MDBS is designed to be easily extensible, as ex-
plained in Section 1.1, so that no significant software development or
down~-time costs are incurred in expanding the system. The greatest expense
incurred will be the cost of the hardware. Therefore, the cost of adding
backends to a system is an important measure of cost-effectiveness. In 1979,
the PDP11/34 minicomputer was the least expensive model in the PDPll series
which supports large~capacity, hard disks and can be interconnected with
DEC”s Parallel Communication Bus (PCL). Using PDPli/34s as backends will
minimize expansion costs for MDBS. Hardware cost is less important in se-

lecting the controller than in selecting the backends., The PDP11/70 can fur-

PAGE 23

nish additional computing power required to support the development effort at

a reasonable cost.

DEC”s response to the original proposal was that since the ultimate goal]
of the implementation effort is database systems research and not product de-
velopment, the latest technology available should be used. Although newer
equipment may be more costly, it may also enhance the research and implemen—
tation effort. The final agreement, therefore, shows: PDPl1/44s are used as
the backends; the VAX11/780 is used as the controller and to support the y
program development effort; and the PCL is wused to intercomnect the
VAX11/780 and PDP11/44s for the purpose of simulating the broadcast and par-

allel transfer capabilities, (See Figure 6 again.)

2,1.2 The Systems Programming Language

A systems programming language for the MDBS implementation must be

powerful yet relatively easy to use., In other words, the language must have -

tem discussed earlier in Section 1.1.2, It is also important to choose the
programming environment and language constructs which will make the develop-
ment effort easier., The implementation team for MDBS is composed primarily
of computer science students who have little practical experience, although
they have a broad base in textbook knowledge. A systems programming language
which makes the development effort easier will help these relatively inexper-

ienced implementors to develop more reliable software,

Systems programming languages can be evaluated in terms of:
availability, portability, and vendor support; programming environment and
language features; and reliability and efficiency. Project planners exam
ined three systems programming languages; Bliss, C, and MAINSAIL. A brief
evaluation of each language and a summary of the reasons for choosing C fol-~
low this section. Some important language features and issues which are ad-

dressed in the evaluations are also explained in the following sections.*

¥ We wish to thank Jos€ Alegria and Tom Bodnovich for the background
material which they contributed for this section,

l enough constructs to program the features for the multi-backend database sys-—

PAGE 24

A data abstraction is a group of related functions or operations that

act wupon a particular class of objects. Users of an object represented by a
data abstraction are constrained to use only the operations defined in the
abstraction. The classic example of a push-down stack as a data abstraction
includes operations to create new stacks, to "push" data o.-c a stack, to
"pop" data off the top of a stack, and to test for stack-f,11 and stack-empty
conditions. This technique is useful in enforcing data integrity and in con-
trolling concurrent operations on shared data. Such a language feature will
be a useful way to implement solutions for one of the design issues for a
multi-~backend system mentioned in Section 1.l1.1, i.e. the software issue of

degree of concurrency.

Another wuseful feature in a language is some mechanism for

type-checking. Such a mechanism assures that the data types of the operands

in an expression (or subexpression) are compatible with the operation which
is to be pertormed. Type-checking contributes to the overall reliability of
the sottware. The issue of reliability of a language involves whether or not
the instructions in a language actually do what they are purported to do by
the language designers and compiler writers. Clearly an unreliable 1language
leads to unreliable software. Remember that a reliable prototype of MDBS is

our goal.

(A) The Bliss Language and Its Compilers

The Bliss language [Wulf71] was originated in the Department of Computer
Science at Carnegie-Mellon University. Dialects of Bliss are available from
DEC for PDPll and VAX systems, but there are significant differences between
the dialects. Another limitation is that object code for the PDPll must be

generated by a cross compiler running on a larger computer system.

There i8 no set of programming tools for Bliss programmers, so the pro-
gramming environment is poor, Bliss is an expression-level lenguage. In its
syntax, all identifiers denote addresses rather than values, 8o a

de-reterence operator (7.”) must be used. For example,

a = .8+ .b

— e wmd N W N

-
'

PAGE 25

is a valid Bliss instruction which, when executed, adds the values at the

addresses represented by identifiers a and b and stores the result at address

a. This notation makes it difficult for the uninitiated to write or read
Bliss code. The language supports no primitive data types. Since operators
are never type-specific, type-checking is non-existent. Nevertheless, an ad-

vantage of Bliss 1s that it suppcrts the data abstraction concept.

There is some question as to the reliability of Bliss, since it contains
so many low-level features., It does, however, seem to be the best of those
languages surveyed when measured in terms of time/space efficiemcy on the DEC

equipment,
(B) The C Language and Its Programming Development Environment

The C language [Kern78) was originally designed for and implemented with
the UNIX operating system [Ritc74] for the DEC PDPll. UNIX is a Bell Tele-
phone Laboratories trademark, and UNIX operating systems are licensed by
Western Electric. €, however, is not tied to any particular operating system
or architecture; C compilers are available on many systems. Not all ver-
sions of C are compatible, so portability can be a problem. C is supported
with all versions of UNIX, and is available from the Digital Equipment Com—

puter Users Society (DECUS), for use with PDPll and VAX operating systems.

A rich set of program development tools usually accompanies UNIX system
sof tware. These tools provide a very good environment for C programmers. C
syntax is very simple. The language supports primitive datua types such as
integer and character; type-checking, however, is not strongly enforced. C
compilers usually do not support extra features, such as sophisticated macro
processing, but many of these features are available in the programming envi-
ronment support provided with UNIX. C, unlike Bliss, does not support the

data abstraction concept.

C is reasonably reliable, even though many vendors do not commercially
support the language. It is also reasonably efficient. A good textbook for

C users is [Kern78].

PAGE 26
(C) The MAINSAIL Language and Its Relationship to the Other Languages

MAINSAIL (MAchine INdependent SAIL) [Wilc77] evolved from the program-
ming language SAIL, which was developed in the late 1960s at Stanford Univer-~
sity’s Artificial Intelligence Laboratory. XIDAK, Inc. owns exclusive
rights to develop and market MAINSAIL. The language is distinguished by its
portability. The same compiler and runtime system, both written in MAINSAIL,
are the basis for every implementation; code generators and procedures which
interface to the operating system must be specially written. MAINSAIL is im-

plemented for DEC PDPll systems.

MAINSAIL was developed and is marketed with a set of integrated tools
for program development. The syntax of the language is similar to ALGOL-60.
Consequently, it appears familiar to most people with formal training in com-
puter science. The set of data types supported is more extensive than that
supported either by Bliss or by C, and there is strong type~checking. On the
other hand, the major disadvantage of the language is that there is no capa-
bility to invoke subroutines written in a language other than MAINSAIL or an

assembly language.

Reliability is rated good. Efficiency, however, is rated lower than
that of either Bliss or C. Low-level features must be coded in an assembly
language, which implies that two development languages must be learned rather

than one.
(D) Why Do We Choose the C Language?

The efficiency ratings of MAINSAIL and the requirement that low-level
features be coded in an assembly language quickly eliminate that language
from consideration. The real choice, then, lies between Bliss and C. C has

a number of features which make it more desirable than Bliss.

First, C is a smaller language and has a simpler syntax. Given the
inexperience of the implementation team, it is important to choose a language
which can be easily learned. Next, the programming environment which can be

provided under UNIX for developing C programs is a major consideration. A

-— N e —

PAGE 27

third factor is that the compilation process for Bliss would require the re-
sources of a computer system at considerable distance from the Laboratory for
Database Systems Research. The Laboratory initally has only two PDPl1/44
systems, which are not large enough to support the Bliss compiler. The re-
sources of a DECSYSTEM20 are available through the Department of Computer and
Information Science, but it is neither convenient nor practical to set up the
required communication links and procedures, since the alternative, using the
C language, is acceptable. C, then, is the language we choose, since it can

make the greatest contribution toward the goals of the implementation effort.

2.1.3 The Operating Systems

Important considerations in choosing the operating systems are system
pertormance, suitability of the operating system features for the MDBS appli-
cation, and suitability of the operating system features for the development
effort. System performance 1is critical if the design goals for a
multi-backend system are to be met, The first two of the three design goals,
which are explained fully in Section 1.1, are:

(1) Throughput performance proportional to the number of
backends.
(2) Response time inversely proportional to the number
of backends.
Suitability for the MDBS application is related to the software solutions
described earlier in Section 1.1.2, Operating system features must support
the solutions selected for design issues such as degree of concurrency.
Suitability for the development effort relates to the implementation goals to
develop reliable software and to effectively manage the development effort.
An operating system which is easier for relatively inexperienced programmers
to use will be more suitable for development. Both UNIX and RSX1l are ana-

lyzed with these considerations in mind.
(A) The UNIX Operating System
UNIX [Ritc74] is a very "user-friendly" operating system. Interactive

programs which teach the user how to use operating system facilities are a

part of the UNIX package; all documentation is available on-line. A variety

PAGE 28

of aids to C programmers are available. An example is the program "Lint",

which checks C programs for syntax errors, such as type violations, which are

not checked by the C compiler.

The characteristics mentioned above make the UNIX environment desirable
for program development. UNIX does, however, lack some system features which
are required for the MDBS implementation. For example, the UNIX file system
would not be satisfactory for our purposes; we would have to write a com—

plete new input/output subsystem.
(B) The RSX1l Operating System

RSX11 is a DEC real-time operating system. Since real-time systems are
engineered for execution speed, RSXll 1is desirable from the performance
standpoint. RSX1ll also provides more flexibility; implementors can choose
which operating system features to use. RSXll also has a variety of features
such as message passing which will be useful in implementing software solu-
tions for concurrency control and backend intercommunication. RSX1l provides
a less desirable programming environment than UNIX, due to the limited set

of programming aids which are available through DECUS.

(C) Why Do We Choose the UNIX Operating System for the
Development Effort and RSX1ll for the Run-Time Effort?

The above discussions make it clear that, while UNIX is more favorable
for MDBS development, RSX1ll is more suitable for MDBS applications. An addi-
tional factor to be considered is that C language programs are portable from
UNIX to RSX1ll with only minor conversion. Furthermore, both UNIX and RSX1l
are available for the PDP11/44 and the VAX11/780. Thus, project planners in-
tend to take advantage of the best features of both systems., UNIX is to be
used in the development effort, i.e., for programming the MDBS procedures,
RSX1l is to be used for research purposes. The MDBS procedures when complet-
ed, will be put together and run with the RSX1l operating system as the final
MDBS. It will be used to validate the results of the MDBS simulation studies

- one of the research directions discussed in Section 1.2,

PAGE 29

2.2 The "How'" of the Implementation Strategy

The software development life cycle is commonly described in stages as

follows:

(1) Requirements analysis

(2) Specification

(3) Design

(4) Coding

(5) Testing

(6) Operation and maintenance
It is sound software engineering practice to chcose specific techniques to be
used throughout the system life cycle. The software engineering objectives
are to enhance the reliability of the software which is developed and to pro-
vide continuity throughout the life of the system. A further objective for
the MDBS implementation effort is that the implementation should proceed as
quickly and effectively as possible, since the eventual goal is to do re-

search using the prototype system.

The MDBS implementation begins with stage two, since stage one, require-
ments analysis, is largely completed. The implemontation strategy presented
earlier in Section 1.3 details the development of five versions of MDBS.
Each version after the first will be based in part upon some previous ver-
sion. Furthermore, these multiple versions may not be developed in chrono~
logical order; the implementation team can be working on more than one ver-
sion at the same time. Therefore, it becomes especially important to select
specific software engineering techniques for the design, coding, and testing
stages of the sortware development effort. These techniques should be se-
lected to provide the best possible project management te:hniques, design and
development tools, and documentation for the life cycles of all of the ver-
sions of MDBS. The techniques to be used in the MDBS implementation effort

are described in succeeding sections of this report.*

2.2.1 Team Organization and Monitoring the Development Effort

Two issues in management strategy are specifically addressed in the

¥ We would liKe to thank Tamer Ozsu for the background material
which he contributed for this section.

PAGE 30

choice of software engineering techniques for the MDBS implementation effort,
First, how should the group be organized? Second, what specific techmiques

should be adopted to momitor the development effort?

(A) A Modified Chief-Programmer-Team Organization

The classic chief-programmer team [Mill71] is headed bv a project
leader, the chief programmer, who has absolute decision-makiung authority,
Other permanent members of the team include a senior-—level backup programmer

and a librarian., Additional programmers may be added as necessary.

The chief programmer does all the design work and writes all of the
critical sections of code, for example the routines for subsystem interfaces.

The backup programmer is an understudy for the chief programmer, and partici-

pates in design and coding; he takes over if the chief programmer leaves the
team. The librarian maintains the group”s program libraries and coordinates

the documentation effort.

One advantage of such an organization is that, since the levels of com~
munication between team members are minimized, development is likely to
proceed at a faster pace than with a decentralized organization. Also, the
system which is developed is likely to be more coherent and consistent since
it is designed primarily by one person. By selecting this organization, we
enhance the reliability and speed of development, in accordance with our

software engineering objectives.

The MDBS implementation group is organized as a modified
chief-programmer team. The entire effort is headed by a team supervisor.
Separate teams are organized for each subproject being developed; each of
these teams is composed of a chief programmer, one backup programmer and one
or more programmers. A second organization chart of the group, depicted in
Figure 7, shows three such teams working on directory management, test file

generation, and database load.

PAGE 31

[Team Supervisor: T. 0zsu |

CLUSTER SEARCH AND

DESCRIPTOR ADDRESS GENERATION
3 DATABASE LOAD SEARCH PHASE PHASES
: Chief: P. Strawser Chief: A. Orooji Chief: T. Ozsu
¢ Backup: D.S. Kerr Backup: Z. Shi Programmer(s): to
Programmer(s): to Programmer(s): to be assigned
be assigned be assigned

a. The Organization as of 6/15/81

¥

Team Supervisor: D.S. Kerr

TEST FILE GEN TTION DATABASFE LOAD) ANAGEMEN
Chief: D.S. Kerr Chief: P. Strawser Chief: A. Oroofl
Backup: P. Strawser Backup: M. Higashid Backup: X. He
Programmers : Programmers: Programmers:

R. Browder Z. Shi J. Bendig
S. Barth R. Browder S. Barth
D.S. Kerr

b. The Organization as of 10/1/81

Figure 7, The Organization of the MDBS Design
l and Implementation Teams

[

B e et

AR 5.5 T e X T

o s e o

R e e o o P NUSEN y :

PAGE 33

!‘l‘tti!lt!!!i!ttliIilﬂtﬁtl‘ilttttlilt!t;iltltitltitt!tlltlllitllttltll
SEBE SEEERESNEABEEEEXALESIRRASISAEPEISSISIREAIBASBENASBXSSINALLILB 442
'WALKTHROUGH REPORT
Coordinator: .. L. SPradystr
Prosect: WOOS Dakibuse (owruratron SE7s Medule
122232333232t i iR s ety PR e st s bR s ti it e ests et sse st
Coordinator’s Checklist:
1, Confirs with sroducer that séterisl is readv and stable.
2. Issue invitatiousr sssisn resronsidilitiess distridbute aaterials.

vare . Z/27 PLace . 23R O .

Tine L LLEY DuRaTION T 2er . .

Can Has

Pasticirant Role) Attend HMaterial Initials
1. Ll V2SS T SR ' ¥
2. -,‘ﬁi&¢4&:¢c&£---- -.-252212%4?2k---- eeen eofeen aiviwews
3. . 7 S cea AT dlAd N o cedTha ececwZow- ---11---

] acl... . Setpadaten =
S. ---CQM:?L-..!-_ --.éﬁdi;s------ 4 iz

-
<.

SRR ERRARE AR RN ER AL AN RERTTAREISRENSBSASNBESSRSIRTEASBREM28 028882388834
Agenda:
-= 1+ All particivants ssree Lo follou the (seme!) set of rules.
ee 2+ New proJect! walkthroush of sateriasl.
0ld rproJect: item-dv-ites checkoff of srevious action list
«a 3. Crestion of new action list (contributions by each sarticisant).
~= 4. Grour decision.
«- 3. Deliver cory of this fors Lo mrrouect sanasesent.

SEERRERBARRAEREBLLLEETSSARASSRISRLSRSRASXASLSESIRSARAYISSIRRSESLSLTLRBLL

Decision! .__ _ Accert sroduct as~is

Jﬁ/’Rovxto (ro further walkthroush)

«- Revise snd schedule another walkihroush

(Particisants should initial asdove.)
EBRENRARRREBEILAITIXNSREANTARSRE IR AN AEXRSEXAENSERSREETASRAABASSRBEREAAR
SERAERSEEERARANTTSIXIRKEAERSSIASTARERARSRLSASSAISERTEEEEESANALRRTSEEXXLIEEL
£30933chklsst. Lt

Notes:
Refer to Figure 7a, which shows the MDBS organization

chart in effect at the time this walkthrough was held.
Note that three of the four chief-proerammers are represented

in this walkthrough committee.
This module is a part of the test file generation

proeramming task.

Figure 8. A Sample Walkthrough Report

PAGE 34

coding follows logically from these decisions. A top-down design strategy,
implemented 1in a formal system specification language, and a structured cod-

ing technique are used in the MDBS implementation effort,
(A) A Top-Down Design Strategy and the Use of Data Abstraction

A top-down design strategy is a natural choice for MDBS. The design and
analysis study in [Hsia8la)] and [Hsia8lb] clearly describes the top level of
design. It also suggests the possibility of functional decomposition, 1i.e.,
the entire system can be broken into discrete functional units. This idea is
supported by Section 1.1.2, which describes a multi-backend system architec~
ture and summarizes the execution phases of a retrieval request, as depicted
in Figure 2, Directory‘management, an example of a functional unit, includes
the descriptor search, cluster search, and address generation phases of re-

quest execution,

At a lower level, one concept, data abstraction, is borrowed from the
bottom-up design approach. Since MDBS is being developed as a prototype sys-
tem and is to be used to research performance evaluation, we anticipate that
data structures will be routinely modified in attempts to measure the effect
of different data structures on system performance. The data abstraction al-
lows us to separate the basic system functions from the data structures, min-

imizing the effect on the system when a data structure is modified.
(B) A Formal Systems Specification Language (SSL)

The design methodology which the MDBS implementation group uses 1is a
systems specification language (SSL) modeled on the program descriptiomn
language (PDL) described in [Ling79)]. The SSL adopts the same basic con-
structs as that PDL. The SSL is characterized by a formal "outer syntax" and
an informal "inner syntax", It supports the outer-syntax comstructs required

for a structured design methodology - sequence, decision, and iteration.

Below is an example of the if-then—else decision construct.

ey

. e e

R

--.—‘

PAGE 35

if expression
then statement sequence
else statement sequence
endif;
The underlined words represent the formal outer syntax. The other words
represent the informal inner syntax; the only requirement for this inner

syntax is that it must be understood by all team members.

In addition there are constructs for the expression of the different
levels of program execution: job, module and procedure. A job is at the
highest level of program execution. Test file generation described in
Chapter 5 and documented in Appendix B, for example, is a job. A procedure
is at the lowest level of program execution. It corresponds to the usual no-
tion of a subroutine. Procedures are invoked to perform some work on some
input data and produce some output. However, they are not allowed to retain
data between invocations. Figure 9 shows a typical SSL procedure specifica-
tion. More examples of SSL specifications using other constructs can be

found in the appendices of this report.

Above the level of procedures, we have the level of modules. A module
is intended for the implementation of a data abstraction. It consists of the
procedures and data structures implementing the abstraction. An additional
construct, the subsystem construct, is added to support the idea of function-
al decomposition. In other words, each job may perform several functioms,
each of which is a subsystem. Thus, subsystems are at the second highest
level of program execution., Directory management described in Chapter 3 and
documented in Appendix D, for example, is a subsystem, as is database load
described in Chapter 4 and documented in Appendix C. The job for both direc-

tory management and database load is, of course, the MDBS.

We may also introduce one more construct, the concurrent construct, to
allow the designers the capability of expressing the notion of concurrent ex-
ecution, including concurrent execution at different backends. For example,
directory management may be executed on all backends concurrently, while da-

tabase load executes on the controller,

PAGE 36

The 4-th level of the
procedure hierarchy

which requires 4 numbers
for each program statement

4 The
Progam

Jomments for programs
statements immediately

Mame
above

A}

FOURTH LEVEL SPECIFICATION FOR DATABASE LOAD

VERSION 2, Sertember 145 1981 PAGE 5

4,10.21+s1 erac LIST_TYPE-C_ATTR_NAMES /% TYFECLST (DBL1113) %/

(input? ture-C. attr names:
atrointer)i

/% List all the attribute names over which ture-C descrirtors &/
/% are to te defined, Inrut is 3 list for attribute names ¥

/% over which tupe-C attributes are to be defined» and a 5/
/% pointer to the AT, 5/
4,10.21.2 scalar index» /% Index to list of attribute names. &/
attr_namer
3 3 durlicates /% Indicator - TRUE or FALSE, x/
dditrointer,/X P?inter into BDIT returned from ATHX/
/% FIND function. X/
descr_tyres /% Ay By Cy or NOTFOUND, ¥4
4,10.,21.3 index = 1j /% Null indicates end of list. %/
4.,10.21.4 tyre-C.attr_names{index] i= nullj N)
. . uter syntax elements are
::ig:gi:z ::;iﬁ-;!ﬁ[ﬁ_ﬁ?’e C descrirtors da underlined. They are the
4,10.21.7 det attr_name fros teraminalj SSL constructs.
4,10.21.8 eerfora ATHSFIND(attr.names
dditrointer:,
rointer to descr_tuerel)i
4,10.21.,9 if a3 tyre-A or ture-B desernptor is already defined
over this attrxbute nam
/% descr.tyre not NOTFOUND s/
4010021010 Lhea.
4,10,21,11 disrlay error messade’s Inner svntax elements
4,10,21,12 else are not underlined
4,10,21,13 hedio -
4,10.21,.14x2 durlicate = FALSE)
4,10,21.15 eecfaca SEARCH TYPE-C_ATTR_NAMES
(tyre-C.attr_names:
gﬁtigggzg;, A program constant
1 4 .
4,10.21.16 it duplicate is FALSE AAAANN
4,10,21.17 then ~—
4.10021018 besin
4,10.21.19 tyre-C_attr_nameslindex] 1= attr_namej
4,10,21,20 index != index + 1;
4,10,21.21 tyre-C_attr_nameslindex] 1= nulli variable
4.10.21,22 eqd-lt;
4,10,21.23 end.if}
4.,10.21.24 ead_wbile’
4,10.21.25 ead_eroc? This number means that this is the 25-th

program statement in this procedure. The
procedure number is 4.10.21 which means that it
was called at proeram statement 21 in the level-3}
procedure numbered 4.10. That procedure was in turn, called
at proeram statement 10 of the level-2 procedure numbered 4.
Procedure 4, in turn, was called bv pnrogram statement 4 in
the main procedure. i

Figure 9.

A SS1 Specification of a Program Procedure

sttt i

1 A Sl

e

[

PAGE 37

(C) A Practice of Structured Coding

The value of structured coding techniques to the software development
effort 1is generally recognized. "Structured coding" refers to a methodology
for problem solving as well as to the particular programming constructs used

in code development.

The structured coding methodology is a top-down approach to the applica-

tion of the principle of modularity, i.e., that a program procedure should
have only one function. "Function" in this context means the transformation
of input into output. A large problem is broken down into smaller
sub-problems. This process is repeated until the solution for the smallest

sub-problem is expressed as a procedure,
Structured code requires the procedure to be written with a small set of
programming constructs: the statement sequence, the if-then-else and case

for decisions, the do-while for iteration. It has been proved that any pro-

gram can be written with only these comstructs.

2,2.,3 A "Black-Box" Testing Approach

In the black-box approach to testing, test data 1is selected without

reference to the internal structure of the program. Instead, test data is
generated based on the program functions described in the requirements
analysis study. This approach is in contrast to the structural approach to
testing, where test data is selected based on some characteristics of the
internal program structure, for example, the number of paths through the pro-

gram.

Intuitively, the black-box testing approach is applicable to testing da-
tabase systems, since database users generally know more about the content of
their databases than about the inner workings of the database system. Test
data selected using the black-box approach will more closely resemble a real-~
istic test of the system. Another advantage of the black-box approach is
that, since no knowledge of internal program structures is required to devel-

op the test data, it is easier to integrate into the testing phase the people

who are not involved in the development phase.

; S ; - 54
-
- © T ——p———

PAGE 38

One application of the black-box approach is functional testing L
[Howd80]. In this application, programs are viewed as functions which map
values from the program”s domain of input variables into its domain of output
variables. Test data is selected based on the important properties of ele-
ments in these domains. The functional testing method is particularly suited T
to the MDBS implementation. The requirements analysis study in [Hsia8la] and
[Hsia81lb] describes the functionai components of MDBS and their input and
output domains. One example, explained earlier in Section 1.1.2, is the
descriptor search phase of request execution, The input domain of descriptor 1
search includes the set of retrieval requests; its output domain is the set

of Boolean expressions of descriptor ids. 1

2.2.4 A Uniform Documentation Standard

The objectives of a uniform documentation standard are [Gilm79]:
(1) To achieve precise and unambiguous communication
among staff members.
(2) To produce complete and accurate documentation.
(3) To assist in project management.
(4) To reduce dependence on individuals.,
We have an additional objective for the MDBS documentation standard: to in-
tegrate the documentation effort into the design and development stages of

the MDBS implementation.

A documentation standard is developed in three steps. First, the termi-
nology to be used must be selected., For MDBS, we adopt a set of standards
for naming programs, program source files, and documentation text files.
More specifically, each program will have a mnemonic name which describes its
function as well as a coded name which identifies its place in the sub-
system hierarchy. For example, the hierarchy chart in Figure 10 shows both

the mnemonic and coded names for the procedures of the database load subsys-

tem,

In the second step, the end products of the documentation effort are

described. The organization and content of each document is planned in

detail. For MDBS, two formal documents are proposed: a systems reference

’llllllllllIIlllllllllIllI!llllllIllllllIlllllIll!l..lIlIlllllIl!IlIl'llllIlllllll!l!llillu-ll--rf*

vV FILEPREP
(DBL11)
/

vV DESCRDEF
vV TYPEADEF (DBL111)

(DBL1111)

vV TYPEBDEF
(DBL1112)

VY TYPECLST (DBL1113)
vV REVDESCR (DBL1114)

vV ATTRCHAR
/v SRCHCLST (DBL1121)
(DBL1122) VY SRCHCLST (DBL1122)

¥V REVRTEMP (DBL1123)

v DRVAORB (DBL1131)

V' DRVC (DBL1132)

Y PUTINLST (DBL1133)

—— Procedures on the left
of a solid line are the
subprocedures of the
procedure on the right
of the solid line.

v/ Coding is completed; walkthrough
is completed; test is to start.

VY Testing is completed also.

-~- Procedures on the left of a dotted
line are also the subprocedures of
the procedure on the right of the
dotted line.

Figure 10.

vV DBPREP

vV RTEMPDEF
(DBL112)

BLDSRT (DBL1134)

PAGE 39

v/ DBLOAD (DBL1)

(DRL12)

SRTCLUST
(DBL13)

v DRVKWORD
({DRL113)

vV PROCLUST
(DBL141)

REVTYPEC (DBL1135)
Y GETRAND (DBL1411)

v DISTRREC (1412)

v NEWCLUST
(DBL14121)

A Sample Procedure Hierarchy

YV LOADDATA

PAGE 40

manual (SRM), and an operating procedures manual(OPM). The SRM will be de-
veloped around the design documentation, i.e., the SSL specifications, thus
minimizing the amount of new material to be written. Material for the OPM

will be developed during the design of the system”s user interface.

The above steps define the documentation task. The next step is to de-
fine procedures for managing the documentation effort. A documentation coor-
dinator will assist the project manager to monitor the MDBS documentation
process. Milestones in the documentation effort are identified to establish
a schedule by which the coordinator can measure progress. The first of these
milestones 1is delivery of the SSL specification to the programmer; progress
of the documentation will be monitored starting at that point. A
step-by-step procedure is established which charts the documentation process
from the first milestone to the last milestone, which is the assembly of the

finished document.

Conformity to the uniform documentation standard will assist the devel~
opment group to prepare complete, accurate, and timely documentation. The
MDBS implementation strategy calls for multiple versions of the MDBS proto-
type to be developed; some of these versions will be based on previous ver-
sions. The organization of the implementation teams is based on specific
tasks; the team will be reorganized as new tasks replace completed tasks.
These are two of the reasons that good documentation and a uniform documenta-

tion standard are especially important to the MDBS implementation effort.

2.3 A Retrospective

After six months experience with the MDBS implementation effort, we
reexamine our decisions. Since the implementation is in its early stages, we
cannot make any conclusive statements. We do, however, observe that thus far
the decisions have proved to be sound. Here we will briefly review our ex-

perience with the hardware and systems software and with the software en-

gineering techniques.

PAGE 41

2.3.1 Evaluating the Hardware and the Systems Software

The PDPl1l/44s have performed as expected. The VAX11/780 is scheduled to
be delivered soon, The PCL is installed and operational, although we have
not yet reached a stage where the software development effort requires a

broadcast capability, since MDBS-I and MDBS-II require no such capability.

To date we have not had available a working version of UNIX, so all of
the development has been done under RSXll. We hope to have Berkeley UNIX on
the PDP11/44s very soon. The entire implementation team is learning and
using the C language as the development effort is progressing. We have en-
countered only those difficulties due to minimal support provided by RSX1l
for programming in C. We have not yet reached a stage in system development

where the underlying features of the operating system are important.

2.3.2 Evaluating the Software Engineering Experience

The project management techniques and the design and coding techniques
have served us well. The SSL and the structured walkthrough have been par-
ticularly valuable. We have, however, discovered some voids in implementa-
tion of our software engineering techniques as well as some additional areas

where new techniques are needed.

The largest void in implementation is that there is no project librarian
to maintain code libraries and no documentation coordinator to supervise the
documentation effort. An area in which the lack of any standard technique or
procedure has proved to be a handicap is in the coding process, where data
structures other than those encapsulated in data abstractions have been
shared between subsystems. These problems can be solved, however, without
invalidating any of the original decisions. It will be instructive to ob-

serve whether this remains true as the MDBS implementation progresses.

PAGE 42

3.0 THE DESIGN AND IMPLEMENTATION OF MDBS VERSIONS

In this chapter we describe the overall designs of MDBS-I and MDBS-II.
We then present the detailed designs of those parts of MDBS-I and MDBS-II
that have been implemented. Occasionally, we refer to other versions of MDBS
in the course of examining design alternatives. Thus, some of the design al-
ternatives are also discussed. On the other hand, details of the implementa-
tion, 1i.e., data structures and program modules specified in System Specifi-
cation Language(SSL), are not included in this chapter. Because they do not
fit well with the designs and discussions written in the English prose, the

implementation details are placed, instead, in the appendices.

In Section 3.1 we first discuss the data model used and summarize the
data manipulation language adopted. As is described in Chapter 1, records
are grouped into clusters by descriptors. Thus we next discuss 1in Section
3.2 the notion of record clustering and the use of descriptors. Finally, we
summarize in Section 3.3 the entire process of request execution in MDBS-I

and MDBS-II.

Section 3.4 is devoted to directory management. There, we discuss the

detailed design of directory management in MDBS-I.

In this section, we develop, in detail, the attribute-based data model
used in MDBS. We then describe the data manipulation language in which users
may issue requests to MDBS, The language also encompasses the useful notion

of a transaction.

3.1.1 Concepts and Terminology

The smallest unit of data in MDBS is a keyword which is an
attribute-value pair, where the attribute may represent the type, quality, or
characteristic of the value. Information is stored in and retrieved from

MDBS in terms of records. A record is made up of a collection of keywords

PAGE 43

and a record body. The record body consists of a (possibly empty) string of
characters which are not used for search purposes by MDBS. For logical rea-
sons, all the attributes in a record are required to be distinct. An example

of a record without record body is shown below:
(<FILE, Employee>, <JOB, Mgr>, <DEPT, Toy>, <SALARY, 30000>).
The record consists of four keywords. The value of the attribute DEPT, for

instance, 1is Toy. In particular, the first attribute, FILE, is known as a

system attribute and the value of the system attribute is the file name of

the record,
(A) Three Kinds of Keywords
MDBS recognizes several kinds of keywords: simple, security and direc-

tory. Simple keywords are intended for search and retrieval purposes.

Security keywords are intended for access control. Since MDBS-I does not im-—

plement any access control feature, no reference to security keywords will be

made in this report. Directory keywords are used for forming clusters. As

is described in Chapter 1, records of a cluster are distributed across the
backends. Within a backend, records of a cluster are stored in close proxim~
ity. We will discuss the concept of a cluster and cluster algorithms in Sec-

tion 3.2.

(B) Keyword Predicates

A keyword predicate, or simply predicate, is of the form (attribute, re-

lational operator, value). A relational operator can be one of

{ =, 1=, >, >, <, =<}, A keyword K is said to satisfy a predicate T if the

attribute of K is identical to the attribute in T and the relation specified

by the relational operator of T holds between the value of K and the value in
T. For example, the keyword <SALARY,15000> satisfies the predicate (SALARY >
10000) .

PAGE 44

(C) Three Types of Descriptors

A descriptor can be one of three types:

Type-A: The descriptor is a conjunction of a less~than-or-equal-to predicate
and a greater-than-or-equal-to predicate, such that the same attri-
bute appears in both predicates. An example of a type-A descriptor
is as follows:

((SALARY >= 2,000) and (SALARY =< 10,000)).
More simply, this is written as follows:
(2,000 =< SALARY =< 10,000).

Thus, for creating a type-A descriptor, the database creator merely
specifies an attribute (i.e., SALARY) and a range of values ($2,000
and $10,000) for that attribute. We term the value to the left of
the attribute the lower limit and the value to the right of the at-
tribute the upper limit.

Type-B: The descriptor is an equality predicate. An example of a type-B des- -
criptor is:

(POSITION = Professor).
Type-C: The descriptor consists of only an attribute name, known as the

type-C attribute. Let us assume that there are n different keywords

K1, K2, ..., Kn, in the records of a database with a type~C attri-
bute. Then, this type-C descriptor is really equivalent to n type-B
descriptors Bl, B2, ..., Bn, where Bi is the equality predicate sa-
tisfied by Ki. 1In fact, this type-C descriptor will cause n differ-
ent type-B descriptors to be formed. From now on, we shall refer to
the type-B descriptors formed from a type-C descriptor as type-C

sub~descriptors. For instance, consider that DEPT is specified as a

type-C attribute for a file of employee records. Furthermore, let
all employees in the file belong to either the Toy department or the
Sales department. Then, two type-B descriptors will be formed as
follows for this file.

(DEPT=Toy) and (DEPT=Sales)
They are the type-C sub-descriptors of DEPT.

PAGE 45

(D) Rules for Providing Descriptors

The database creator may cause clusters to be formed for his database by

giving the MDBS a 1list of descriptors., However, he must observe certain

rules in providing the descriptors, These are specified below:

(1) Ranges specified in type-A descriptors for a given attribute must be
mutually exclusive.

(2) For every type-B descriptor of the form (attribute-l = value-1l), no
type~A descriptor can have the same attribute (i.e., attribute-l1) and
a range that contains its value (i.e., value-l1).

(3) An attribute that appears in a type-C descriptor must not also appear
in a type-A or a type-B descriptor defined previously.

(4) Type-A descriptors are specified first; type-B descriptors next;

type-C descriptors last.
(E) The Relationship of Keywords and Descriptors

A keyword is said to be derived or derivable from a descriptor if one of

the following holds:
(1) The attribute of the keyword is specified in a type-A descriptor and
the value is within the range of the descriptor.
(2) The attribute and value of the keyword match those specified in a
type-B descriptor,
(3) The attribute of the keyword is specified in a type-C descriptor,

(F) Query Conjunctions and Queries

A query conjunction, or simply conjunction, is a conjunction of predi-

cates. An example of a query conjunction is:
(SALARY>25000) and (DEPT=Toy) and (NAME=Jai).

We say that a record satisfies a query conjunction if the record contains

keywords that satisfy every predicate in the coanjunction.

A query is any arbitrary Boolean expression of predicates. An example

of a query is:

((DEPT=Toy) and (SALARY<10000)) or ((DEPT=Book) and (SALARY>50000)).

I'!!II-lllllllllllIlIIlIIlllIlllllllIlIlIIIlllllllllll'llllIIlllll,ll"""'-""""l"'lr T—— ' '“1.!

PAGE 46

3.1.2 The Data Manipulation Language (DML)

The data manipulation language for MDBS is a non-procedural language
which supports four different types of requests - retrieve, insert, delete
and update. The syntax of these various requests and examples of them are

presented below.

(A) Retrieve Requests

The syntax of a retrieve request is:
RETRIEVE Query Target-List [BY Attribute] [WITH Pointer].
That is, it comsists of five parts, The first part is the name of the re-
quest, The second part is a query which identifies the portion of the data-
base to be retrieved. The target-list is a list of elements. Each element
is either an attribute, e.g., SALARY, or an aggregate operator to be per-
formed on an attribute, e.g., AVG(SALARY). We will support five aggregate
operators — AVG, SUM, COUNT, MAX, MIN - in MDBS. An example of a target-list
of two elements is (NAME,SALARY). The values of an attribute in the
target-list are retrieved from all records identified by the query. If no
aggregate operator is specified on the attribute in the target-list, its va-
lues in all the records identified by the query are returned directly to the
user or user program, If an aggregate operator is specified on the attribute
in the target-list, some computation is to be performed on all the attribute
values in the records identified by the query and a single aggregate value is
returned to the wuser or user program. The fourth part of the request, re-
ferred to as the BY-clause, is optional as designated by the square brackets
arouad it. The use of the By-clause is explained by means of an example.
Assume that employee records are to be divided into groups on the basis of
the departments for the purpuse of calculating the average salary for all the
employees in a department. This may be achieved by using a retrieve request
with the specific target-list, (AVG(SALARY)), and the specific BY-clause, BY
DEPT. Finally, the fifth part of the request, which is an optional
WITH-clause, specifies whether pointers to the retrieved records must be re-
turned to the user or user program for later use in an update request. Some

examples of retrieve requests are presented below.

|
I
I
I

Gl O G O O o O O O G A EE aN EE e s

PAGE 47

Example 1. Retrieve the names of all employees who work in the Toy De-

partment.
RETRIEVE (FILE=Employee) and (DEPT=Toy) (NAME)

Example 2. Retrieve the names and salaries of all employees making more
than $5000 per year.
RETRIEVE (FILE=Employee) and (SALARY>5000) (NAME,SALARY)

Example 3. Find the average salary of an employee.

RETRIEVE (FILE=Employee) (AVG(SALARY))

Example 4. List the average salary of all departments.
RETRIEVE (FILE=Employee) (AVG(SALARY)) BY DEPT

(B) Insert Requests

The syntax of an insert request is:
INSERT Record
where the Record is to be inserted into the database. An example of an in-
sert request 1is:

INSERT (<FILE,Employee>,<SALARY,5000>,<DEPT,Toy>)

(C) Delete Requests

The syntax of a delete request is:
DELETE Query
where the Query specifies the particular records to be deleted from the data-
base. An example of a DELETE request is:
DELETE (NAME=Hsiao) or (SALARY>50000)

(D) Update Requests

The syntax of an update request is:
UPDATE Query Modifier
where the Query specifies the particular records to be updated from the data-

base and the Modifier specifies the kinds of modification that need to be

SN SASRA E SEE B

POV TR SRP S

PR WPCRR S TP

R S

« e

PAGE 48

done on records that satisfy the query. In an update request, if a single
attribute value is tc be changed, then the attribute is termed the attribute

being modified. The modifier in an update request specifies the new value to

be taken by the attribute being modified. The new value to be taken by the
attribute being modified is specified as a function f of the old value of ei~
ther the same attribute or some other attribute (say, attribute-l). More
specifically, the modifier may be one of the following five types:

Type-0 : <attribute=constant>

Type-I : <attribute=f(attribute)>

Type-1I : <attribute=f(attribute-1)>

Type-III : <attribute=f(attribute-1) of Query>

Type-1V : <attribute=f(attribute-1) of Pointer>

Let a record whose attribute is being modified be referred to as the

record being modified. Then, a type-0 modifier sets the new value of the at-

tribute being modified to a constant. A type~I modifier sets the new value
of the attribute being modified to be some function of its old value in the
record being modified. A type-II modifier sets the new value of the attri-
bute being modified to be some function of some other attribute value in
the record being modified. A type-III modifier sets the new value of the at-
tribute being modified to be some function of some other attribute value in
another record uniquely identified by the query in the modifier., Finally, a
type-IV modifier sets the new value of the attribute being modified to be
some function of some other attribute value in another record identified by

the pointer in the modifier.

An example of a type-0 modifier is:
<SALARY=50000>
This sets the salary in all the records being modified to 50000.

An example of a type-I modifier is:
<SALARY=] .1*SALARY>

This raises the salary in all the records being modified by 10%.

An example of a type-II modifier is:
<MONTHSAL=YEARSAL/12>
This sets the monthly salary in all the records being modified to be a

twelfth of their own yearly salaries.

e — e hn

PROVE VNS

LIPS SRR S

[T RO v-%

JURRPN- SO

_ A~ JJ

PAGE 49

An example of a type-I1II modifier is:
<SALARY=SALARY of (FILE=Wife) and (NAME=Tara)>.
This causes the following actions to be taken by MDBS. Using the query
"(FILE=Wife) and (NAME=Tara)", a record is retrieved. Then, the SALARY value
of that record is obtained. This value is used for the salary in all the re-

cords being modified.

An example of a type-IV modifier is:
<SALARY=SALARY of 2000>
which modifies the salary in all the records being modified to that of the
record stored in location 2000. In order to use this type of modifier, the
user must have previously issued a retrieve request which had WITH POINTER

option.

An example of a complete update request would be:
UPDATE (FILE=Employee) <SALARY=SALARY+5000>

which gives a $5000 raise to all employees.

3.1.3 Transactions and Consistencieus

In DML, we allow the flexibility for a user to specify a set of requests
for repeated execution., Such a pre-specified set of requests shall be re-
ferred to as a tranmsaction. As in other systems, a transaction must preserve
consistency. A database-creator specifies a set of assertions on the data-
base. These assertions are constraints which must be satisfied by data in
the database. For instance, since employees may not have negative salaries,
an assertion on the database may require that all employees have non-negative
salaries. An assertion about a database is said to be true in the database
if the data in the database satisfies the constraints in the assertion., A

database 1is in a consistent state if all the assertions made on the database

by the database~creator are true in the database. Finally, a transaction is
said to preserve consistency if assuming the database is in a comsistent
state before the transaction is executed, then immediately after the transac-
tion has completed execution, the database must be still in a consistent

state,

PAGE 50

3.2 The Notion of Record Clusters

Record clusters are formed for the purposes of narrowing the search
space and minimizing the effort needed to search for records which may satis-
fy a given request. In other words, by organizing a database into clusters
and by maintaining information about these clusters, MDBS may readily identi-
fy those clusters whose records will satisfy the given request, thereby achi-

eving high throughput and good response time.

Although the notion of a record cluster for the aforementioned purposes
is well known, the effectiveness of clusters for throughput gain and response
time improvement lies in the effectiveness of the <clustering algorithm for
forming clusters and the placement strategy for storing these clusters. In
other words, it depends on how clusters are formed and placed. Interestingly
enough, it does not depend on how clusters are used. In other words, the
throughput and response time of MDBS are “immune” to the way the clusters
are utilized. This is because every request execution by MDBS will involve
the search and retrieval of clusters. Such search and retrieval can always
be shown to be maximal for throughput gain and response-time improvement.
Briefly, this is due to our use of the descriptors as a means toc define and
form clusters. As we recall, a descriptor is either a single predicate or a
conjunction of predicates. We may also recall that a query in a user request
is a Boolean expression of predicates. Thus, a given user request will re-
quire the retrieval of data which satisfy the predicates of the expression.
Since clusters are formed by the definition of descriptors and both descrip~
tors and queries utilize the common notion of predicates, the data retrieved
for the request are actually one or more clusters. Clusters therefore become
the ideal formation (or unit) of data for storage and retrieval and for per-

formance optimization.

In the following sections, we will describe how the clusters are formed

in MDBS and how they are used. We will begin with some definitions.

PAGE 51

3.2.1 Cluster Formation

For a database, the creator of the database specifies a number of des-

criptors called clustering descriptors, or simply, descriptors. An attribute

that appears in a descriptor is called a directory attribute. We say that a

directory attribute belongs to a descriptor if the attribute appears in that

descriptor.

We recall that a record consists of attribute-value pairs or keywords.
For purposes of clustering, only those keywords of the record which contain
directory attributes are comnsidered. Such keywords of the record are termed

directory keywords. From the rules for forming descriptors specified ear-

lier, it is easy to see that a directory keyword is derivable from at most
one descriptor. For example, consider a database with SALARY as the only di-
rectory attribute. Furthermore, let (0=<SALARY=<50000) be the only descrip-
tor DI on SALARY specified by the database creator. Now, consider two re-
cords, one containing the directory keyword <SALARY,25000> and the other con-
taining the directory keyword <SALARY,75000>. Clearly, the former directory
keyword is derivable from the descriptor Dl and the latter directory keyword
is not derivable from Dl1. Hence, the latter keyword is not derivable from

any descriptor in the database and we say that the directory keyword 1is

derivable from no descriptor. Since a record may have many directory key-

words, each of which will be derivable from at most one descriptor, we say
that the record is derived from a set of descriptors. It is possible for a
record to be derived from the empty set of descriptors., There are two such
cases. In the first case, it may happen that a record does not contain any
directory keyword. In this case, it is said that the record is derived from
the empty set of descriptors. Thus, going back to the previous example with
the single directory attribute, SALARY, and the single descriptor,
(0=<SALARY=<50000), a record which does not contain any salary information
(i.e., no keyword with the attribute SALARY) is said to be derived from the
empty set of descriptors. The second case in which a record is derived from
the empty set of descriptors is when the record does indeed contain directory
keywords, but these keywords are not derivable from existing descriptors. In
the previous example, a record with the directory keyword <SALARY,75000>
which is not derivable from the descriptor is therefore derived from the

empty set of descriptors also.

PAGE 52

If two records are derived from the same set of descriptors, they are
likely to be retrieved together in response to a user request, since these
two records have keywords which are derivable from the same set of descrip-
tors. Thus, these two records should be stored together in the same cluster.
A cluster is, therefore, a group of records such that every record in the
cluster 1is derived from Lhe same set of descriptors. We say that a record
cluster is defined by the set of descriptors from which all records in the

cluster are derived.

It is easy to see that a record belongs to one and only one cluster. 1

The reasoning is as follows. A record consists of zero or more directory
keywords. If it comsists of zero directory keywords, it belongs to the clus-
ter defined by the empty set of descriptors. If the record consists of one
a or more directory keywords, thenm, the record must be derived from one and
only one set of descriptors, since each directory keyword is derived from at
| most one descriptor. This unique set of descriptors defines the unique clus-
ter to which the record belongs. Thus, we have used the concept of descrip-

tor sets to partition the database into equivalence classes, namely clusters.

In order to form clusters for the records in a database, the

record-to-cluster algorithm is provided to take a record and determine its

cluster. For each attribute-value pair in the record, determine if the at-
tribute 1is a directory attribute. If it is not, then that attribute-value
pair is not used for cluster determination. If the attribute is a directory
attribute, determine the descriptor, if any, from which it is derived. We

refer to this descriptor, if any, as the corresponding descriptor for the

given attribute-value pair. The set of corresponding descriptors for all the

attribute-value pairs in a record defines the cluster to which the record be-

longs. By using the algorithm on every record of a database at

database~creation time, we may form the record clusters of the database.

3.2.2 Cluster Determination During Request Execution -

Up to this point, we have been describing the process of cluster forma-

tion. We will now explain how clusters are used during request execution.

PAGE 53

More specifically, we will explain how to determine the cluster to which a
new record belongs and how to determine the set of clusters which must be re-

tri -ed in order to satisfy a query for retrieval, deletion or update.

(A) Inserting Records into Clusters

During the process of cluster formation described in the previous sec-
tion, MDBS uses the record-to-cluster algorithm repeatedly for determining
the cluster of a record in the database. This same algorithm may now be used
by MDBS to determine the cluster of a record for the record”s imsertion. In

insertion, the cluster definition table (CDT) is used in order to determine

the secondary memory address (addresses) of this cluster. CDT is a table ma-
intained by MDBS. There is an entry in this table for every cluster. Each
entry consists of a cluster number, set of descriptor ids defining the clus-
ter, and addresses of the records in the cluster. A sample CDT is depicted

in Figure 11,
(B) Retrieving, Deleting and Updating Records from Clusters

Let us describe how MDBS determines the set of clusters which satisfy
the query in a retrieval, deletion or update request. Before we may do this,

we must introduce some concepts and terminology.

Descriptor X is defined to be less than descriptor Y, if the attributes
in both descriptors are the ssme and one of the following holds.

(1) Both descriptors are of type~A and the upper limit of descriptor X is
lower than the lower limit of descriptor Y.

(2) Both descriptors are of type-B and the value in descriptor X is
smaller than the value in descriptor Y.

(3) Descriptor X is of type-A and descriptor Y is of type-B aﬁd the upper
limit of descriptor X is lower than the value in descriptor Y.

(4) Descriptor X is of type-B and descriptor Y is of type—~A and the value

in descriptor X is smaller than the lower limit of descriptor Y.

The above definition also covers the case where either X or Y 1is a

type-C descriptor, since type-C descriptors are stored as type-B descriptors

PAGE 54

Notes:

(1) Clusters have unique cluster numbers.

(2) No two clusters have 2 record in common.

(3) A cluster is defined by a set of descriptors.

(4) The keywords of the records in a cluster are
derivable from the descriptors of the set
defining the cluster.

(5) Two sets of descriptors defining two clusters
may have descriptors in common.

Cluster Corresponding Set Address o{
Number of Descriptor Tds the Record in
the Cluster
€1 D2,D3 R1,R6,R7
c2 D1,D3,D7 R4 ,R8
3 D4, D6 R2,R3

Figure 11. A Sample of The Cluster Definition Table (CDT)

Aol

PAGE 55

in MDBS. An exactly parallel description for the greater—than relation among

descriptors may also be given.

As an example, let us assume that we are given the descriptors Dl
(10000=<SALARY=<20000), D2 (0=<SALARY=<8000), D3 (SALARY=9000) and D4
(SALARY=21000). Thus, D3 is less than DI; D2 is less than D3; and D! 1is
less than D4,

Using the above definition of less-than and greater—-than for the des-
criptors, we are ready to describe the algorithm for determining the corres-
ponding set of clusters for a query in a user request, The query is assumed
to be in disjunctive normal form, i.e., disjunction of conjunctions. The al-

gorithm, known as the gquery-to-cluster algorithm, will proceed in three

steps.

Since a query conjunction consists of predicates, we will determine, in

the first step, a corresponding descriptor or a corresponding set of

descriptors for each predicate. This is done as follows. If the predicate
in a query conjunction is an equality predicate, then the corresponding des-
criptor is the one from which the keyword satisfying the predicate is
derived. For example, if the predicate is (LOCATION=Napa), then the keyword
satisfying the predicate is <LOCATION, Napa> and the corresponding descriptor
is (LOCATION=Napa). If the predicate is either a less-than or
less-than~or-equal-to predicate, it is first treated as an equality predicate
and the corresponding descriptor D for that equality predicate is first de-
termined. Then, all the descriptors less than D, along with D, form the cor-
responding set of descriptors for the less-than or less-than-or-equal-to
predicate. If the predicate is a greater-than or greater-than-or-equal-to
predicate, then it is first treated as an equality predicate and the corres-
ponding descriptor D for that equality predicate is first determined. Then,
all the descriptors greater than D, along with D, form the corresponding set
of descriptors for the greater—-than or greater-than-or-equal-to predicate.

Thus, we have determined a corresponding set of descriptors for a predicate.

The above procedure 1is repeated for every predicate in the query

PAGE 56

conjunction. Thus, we will have determined a corresponding set of descrip-

tors for every predicate in a query conjunction.

Our next step is to determine the corresponding set of clusters for a

query conjunction, since a query consists of one or more query conjunctions.
Let the query conjunction have p predicates. Let the set of descriptors cor-
responding to the i~th predicate be Si. Now, form all possible groups, where
each group consists of one descriptor from Si for i ramging from 1 to p. In
other words, we are forming the cross-product of Si. The reason for forming
this cross~product of p sets is because a query conjunction consists of a
conjunction of p predicates, each of which has a corresponding set Si of des-
criptors. Each element in this cross-product is termed a descriptor group
which 1is of course a set of descriptors. Intuitively, a group defines a set

of clusters whose records satisfy the query conjunction.

We now consult the cluster definition table, i.e. CDT (see Figure 11
again.) However, the definitions kept in the table may not be identical to
the definitions of the groups. Without relating the descriptor groups with
the descriptor sets kept in the table, we may not be able to determine the
clusters involved. Thus, this second step includes the determination of
whether there are descriptor sets in the table which contain a descriptor
group. If there are such sets, then the clusters defined by the descriptor

sets are indeed the clusters referred to by the descriptor group.

By repeating this procedure for every descriptor group in the
cross~product, we are able to determine the corresponding set of clusters for
a query conjunction. The entire second step which is used to dete-mine the
corresponding set of clusters for a query conjunction is then repeated for
every query conjunction in the query. Thus, we have determined a correspond-

ing set of clusters for every query conjunction in the query.

The final step of the algorithm determines the corresponding set of
clusters for the query from the corvesponding set of clusters for each query
conjunction in the query. Since the query is a disjunctior of conjunctions,

the corresponding set <can be simply obtained as the union of the sets of

clusters for each query conjunction in the query.

o

PAGE 57

3.3 The Entire Process of Request Execution

In this section, we discuss the entire sequence of actions performed by
MDBS 1in processing the four different types of requests. We shall discuss

each type of request, in turnm.

3.3.1 Executing an Insert Request

The syntax of an insert request in MDBS is
INSERT Record.
The controller will first parse the request and determine that it is an in-
sert request. Next, the controller will broadcast the request to all the
backends. The backends will perform descriptor processing. At the end of
the descriptor search phase, the single cluster to which the record to be in-
serted is known to the backend(s) whose secondary memory (memories) has
(have) been accommodating the cluster. The reason that more than one backend
may be involved in accommodating the cluster in consideration 1is that the
cluster being sufficiently large has been evenly distributed by the data
placement strategy over several backends” secondary memories at the
database~creation time. Consequently, MDBS must decide which backend”s sec~
ondary memory is to be used for accommodating the new record. By consulting

the cluster-id-to-next-backend table (CINBT), MDBS can select the secondary

memory of a specific backend for record insertion. The CINBT is created at
the database-creation time by the data placement strategy. A sample CINBT is

depicted in Figure 12,

3.3.2 Executing a Retrieve Request

We recall that the syntax of a retrieve request in MDBS is as follows:

RETRIEVE Query Target-list [By Attribute][WITH Pointer].

The controller will first parse the request and determine that it 1is a
retrieve request., Next, the controller will broadcast the request to all the
backends. The backends will perform descriptor processing and address gener-

ation. Upon completion, each backend has a 1list of secondary memory

.

PR EEINEY

Notes:

(1)
(2)

(3

PAGE 58

The number of backends in a MDBS may be
large, say, 6.

A cluster of many records is stored in a
specific round-robin way among the backends'
disk drives.

This table is kept up to date by MDRS as new
records are inserted into the database and
existing records are modified which result
in changes of clusters.

Backend Number or
Cluster the next Backend fon
Number Inserting the Record
of the Cluster

1 B3
- B1
o3 B2
C4 Bl
C5 B6

Figure 12,

The Cluster-~Td-To-Next-Backend Table (CINBT)

R T

L N TR OO TD e m S et Y

PAGE 59

addresses of the tracks which contain the relevant records. These tracks are
accessed by the backend, The query in the request is used to select the
records from these tracks. First, the records satisfying the query are se-
lected. If a BY-clause is specified in the retrieve request, the selected
records are grouped by the values of the attribute in the BY-clause. If no
BY-clause 1is specified in the retrieve request, all the selected records are
treated as a single set, Next, for each set of selected records, the values
of all attributes in the target-list are extracted from the records of the
set, If no aggregate operator 1is specified on an attribute in the
target-list, the extracted values of the set are returned to the controller.
If an aggregate operator is specified on an attribute in the target-list,
some computation 18 performed on all the attribute values in the records of
the set and the results are returned to the controller., For example, to com—
pute the average salary, each backend computes the sum of all the salaries in
its set of retrieved records. It then returns this sum and a count of the
number of records in the set to the controller. The controller combines the
sums and counts from all the backends to give the average salary, which is
returned to the user, This completes the actions performed by a backend on
each set of selected records. If a WITH-clause is specified in the retrieve
request, the secondary memory addresses of all selected records must also be

sent to the controller by each backend.

The controller will wait for responses from all the backends. Upon re-~
ceiving all the responses (i.e., attribute values, aggregate values or ad-
dresses) from all backends, the controller will forward these responses to
the user that issued the retrieve request. This completes the execution of

the retrieve request.

3.3.3 Executing a Delete Request

As we recall, the syntax of a delete request is
DELETE Query
The execution of this request in MDBS is similar to the execution of a
retrieve request. The controller will first parse the request and determine

that it is a delete request. Next, the controller will broadcast the request

to all backends. The backends will perform descriptor processing and address

ke

Cir) e p—— ey

PAGE 60

generation. Upon completion, each backend has a list of secondary memory ad-
dresses of tracks which contain relevant records. Records of these tracks
are retrieved from the secondary memory by respective backends. The query in
the delete request is used to select the records which are to be deleted.
The selected records are then marked for deletion. The track space occupied
by the marked records is not immediately recovered. Such recovery of space
will be done during database reorganization time. After the records are
marked, the marked records are written back to the same tracks by each back-
end. If all the records in a track are marked for deletion, the address of
this track is removed from all entries in which it appears in the cluster de-
finition table (CDT). Finally, each backend will send an acknowledgement to
the controller to indicate that it has finished executing the delete request.
Upon receiving the acknowledgements from all the backends, the controller
will inform the user or user program that the delete request has successfully

been completed.

3.3.4 Executing an Update Request

The syntax of an update request in MDBS is as follows:
UPDATE Query Modifier-
We recall that the modifier in an update request specifies the new value to
be taken by the attribute being modified and that it may be one of the types

described below.

Type-0 : <attribute = constant>
f(attribute)>
f(attribute-1)>

Type-1 : <attribute

Type-11 : <attribute

[}

Type-1II : <attribute = f(attribute-1) of Query>

f(attribute-1) of Pointer>

Type-1IV : <attribute

An update request containing a modifier of types 0, I or II is droadcast
by the controller to all the backends. The backends will perform descriptor
processing and address generation., Afterwards, each backend has a 1list of
secondary memory addresses of the tracks containing the relevant records.
These tracks are accessed by respective backends and the records satisfying

the query are selected from these tracks. These are the records being modi-

fied.

e,

bt s

L

L}

. g s

T e e

PAGE 61

Each of these records is changed according to the modifier in the update
request. If the modifier is of type-0, the new value is provided in the mod-
ifier, If the modifier is of type-~I, the new value is computed as a function
(specified in the modifier) of the value of the same attribute. Finally, if
the modifier is of type-II, i.e. of the form <attribute = f(attribute-1)>,
the new value is computed as a function f of the value of the attribute-l in

that record.

Due to its change in attribute values, an updated record may remain in
the same cluster to which it (more precisely, pre-updated version) belonged
or it may now belong to a different cluster. In the latter case, a record is

said to change cluster. Recall that a cluster is a group of records such

that every record in the cluster is derived from the same set of descriptors.
Thus, an updated record will belong to a different cluster only if the set of
descriptors from which it is derived is different from the set of descriptors
from which the pre-~updated version was derived. If the attribute being modi-
fied in an updated record is not a directory attribute, the wupdated record
continues to be derived from the same set of descriptors, since only directo-
ry attributes affect the descriptors. Hence, the updated record does not
change cluster. If the attribute being modified is a directory attribute, an
updated record may change cluster. If an updated record changes cluster, the
pre-updated record is marked for deletion and the updated record is inserted

in the appropriate cluster.

Finally, each backend will send an acknowledgement to the controller to
indicate that it has finished processing the update request. When it has re-
ceived acknowledgements from all backends, the controller will return a mes-
sage to the user to signal successful completion of the update request. This
completes the processing of an update request containing modifiers of types

0, I or II.

Now, let us describe the execution of an update request containing a
type-III or type-IV modifier, Recall that these modifiers have the form
<attribute = f(attribute-1) of Query> and <attribute = f(attribute-1) of
Pointer>. Thus, in this case, another record must first be retrieved by MDBS

on the basis of a user-provided query or pointer. After the record 1is

T e) e, o g,

- iy,

PAGE 62

retrieved, the controller will extract the attribute-l value v from the re-
trieved record. It will then compute the function f (specified in the
type-1II or type-1V modifier) on the value v and thus obtain a new value v”.
The controller will then form a type-0 modifier of the form
<attribute = v7>

where attribute is the one that appeared to the left of the equality sign in
the type-1I11 or type~1V modifier., The original type~III or type~IV modifier
in the update request is now replaced with this newly created type-0 modif-
ier. In other words, MDBS converts an update request containing a type-III
or type-IV modifier to an update request containing a type-0 modi!ier. This
update request containing a type-0 modifier may now be executed in the same

manner described previously.

3.4 Directory Management

In this section, we describe the detailed design and implementation of

directory management in MDBS-I.

3.4.1 The Input: Non-Insert Requests and Insert Requests

The input to directory management is either the record part of an imsert
request or the query part of a retrieve, delete, or update request. The

three non-insert request types, namely, retrieve, delete and update, require

the same directory management. However, the insert request type requires a
different directory management. Thus we will describe directory management

in terms of two categories: non-inserts and inserts,

We recall that the directory management in MDBS-1 consists of three
phases. In the first phase, MDBS determines the corresponding descriptors
either for each predicate of a query in the case of a non-insert request or
for each keyword of a record in the case of an insert request. In the second
phase, MDBS determines either the corresponding set of clusters in the case
of a non-insert request or the corresponding single cluster or a new cluster
in the case of an insert request. In the third phase, MDBS determines either

the addresses of clusters in the case of a non-insert request or a single ad-

il ea

BB - B

PAGE 63

dress for inserting the record in the case of an insert request. (See Figure
2 again.) The following tables are used in the three phases for processing

either non-insert or insert requests.

(A) Four Directory Tables: The Descriptor-to-Descriptor-Id Table (DDIT),
The Attribute Table (AT), The Cluster-Definition Table (CDT) and
The Cluster-Id-to-Next-Backend Table (CINBT)

These tables are an integrated part of the directory management.

Logically, they are defined as follows:

All the descriptors defined by the database creator are stored inm the

descriptor—-to-descriptor~id table (DDIT). There is a descriptor id associat-~

ed with each descriptor. A sample DDIT is depicted in Figure 13,

There is an entry in the attribute table (AT) for every directory attri-

bute. A pointer to the DDIT is stored with each directory attribute. The
pointer points to the first descriptor whose attribute is identical to the
corresponding directory attribute. A sample AT is depicted in Figure 14.
Also shown in the figure is the DDIT of Figure 13. By showing these two

tables together, we can easily depict the pointers of AT,

The cluster~definition table (CDT) is described in Section 3.2.2. A
sample CDT 1is also depicted earlier in Figure 11, so we do not repeat the
figure here. However, we do repeat the definition here. There is8 an entry
in this table for every cluster. Each entry consists of the cluster number,
the set of descriptor ids whose descriptors define the cluster, and addresses

of the records in the cluster.

The cluster-id-to-next-backend table (CINBT) is also depicted earlier in
Figure 12, A backend for record insertion is chosen on the basis of this

table.

o

P SR SO

.y

PAGE 64 I
Notes:
(1) Descriptors are provided by the database creator.
(2) A set of descriptors defines a cluster.
(3) Clusters are system entities which are 'transparent'’
to the user.
Descriptor
Descriptor 1d
20 = <« AGE =< 30 D1
40 = < AGE = < 65 D2
5000 = < BALANCE = < 10000 n3
BALANCFE, = 20000 D4
30000 = <« BALANCE = < 45000 DS
LOCATION = 0OSU D6
LOCATION = ONR n7

ey

Figure 13. The Descrintor-To-Descriptor-1d Table (DDIT)

I
i
i

PAGE 65

AT
Directory Pointer
Attribute to DDIT 4
4
AGE N
BALANCE
{v LOCATION N

DDIT (from Figure 13)

e SEE ER & GE D B e e

] Descriptor
' Descriptor 1d
20 = < AGE = < 30 Dl
40 = < AGE = < 65 n2
5000 = < BALANCE = < 10000 n3

-
BALANCE = 20000 Db
30000 = « BALANCFE = < 45000 N5
LOCATTON = QSU D6
LOCATION = ONR n7
%

Figure 14. The Attribute Table (AT) and
its Relatiomship to MDTT {

ii

gl 10

PAGE 66

(B) Three Phases of Processing: Descriptor Search, Cluster Search and

Address Generation

As described in Chapter 1, directory management has three phases. In
the first phase, both AT and DDIT are searched to determine the corresponding
descriptors either for each predicate of a query in the case of a non-insert
request or for each keyword of a record in the case of an insert request.
This is the descriptor search phase. In the second phase, the CDT is
searched. For descriptors produced from the previous phase, either the cor-
responding single cluster in the case of an insert request or the correspond-
ing set of clusters in the case of a non-insert request is determined. This

is the cluster search phase. By searching the same CDT, the addresses of

clusters can be found in the third phase. This is the address generation

phase.

(C) The Choice of a Processing Strategy for the Controller and the Backends

In previous discussions, we make no distinction whether the three phases
are carried out in a single computer (i.e., either the controller or one of
the backends) or in multiple computers (a controller and several backends).
In [HsiaB8la], six different strategies for carrying out the descriptor search
phase in the multiple backends and one strategy for carrying out the descrip~
tor search phase in the controller are examined. There are also two strateg-
ies for carrying out the cluster search and address generation phases: one

in the controller and the other in the backends.

If we are to achieve an ideal system in which the response time is in-
versely proportional to the number of backends, we need to distribute the di-
rectory management work among the backends. By carrying out the directory
management in the backends, MDBS may be alleviated from the controller limi-

tation problem as suggested in [Hsia8lal.

In the following, we describe those three strategies that distribute the

work among the backends and utilize parallel processing by the backends. All

three strategies carry out the cluster search phase anc¢ the address genera-

PAGE 67

tion phase in all the backends. By carrying out these two phases in the
backends, each backend wou' ' aeed to generate only those secondary memory ad-
dresses associated w hat backend. On the other hand, if the addresses
were to be generated by . controller, the controller would need to generate
all the relevant secondary memory addresses associated with all the backends.
Thus, the former case distributes address generation work among the backends;

the latter case does not and concentrates all the work in the controller.

(1) The Fully-Duplicated Strategy

In this strategy, AT and DDIT are fully duplicated in all the backends.
However, CDT is not duplicated. Instead, only the portion of CDT which is
relevant to those clusters stored in the backend is placed in that backend.

The descriptor search work is distributed among the backends. More specifi-

cally, if there are n backends in MDBS and a query contains Xx predicates,
each backend will perform descriptor search, by using AT and DDIT, on x/n
:] predicates and generate x/n corresponding descriptor sets which will, in
turn, be communicated to all other backends, Each backend then performs,
by using its portion of CDT, the cluster search phase and the address

generation phase.

(2) The Descriptors-Division-Within-Attribute Strategy

In this strategy, AT is duplicated in all the backends. DDIT and CDT

are not duplicated. If there are i descriptors on each directory attribute,

each backend will maintain for each attribute i/n descriptors. Each backend

performs descriptor search on all the predicates to generate part of corres-

ponding descriptor sets. After each backend obtains some results, they ex-

change their results., Then, each backend proceeds with its own cluster

search phase and address generation phase.

(3) The Fully-Replicated Strategy

In this strategy as in strategy 1, AT and DDIT are duplicated in all the
backends. CDT is not duplicated. However, unlike strategy l, each backend

will work on the entire query during the descriptor search phase, instead of

} PAGE 68

x/n predicates of the query. The advantage of letting each backend do the
descriptor search on all predicates is that exchanges of descriptors among
(backends are unnecessary in this strategy because each backend has all the
needed descriptors. After completing the descriptor search, each backend

does its cluster search phase and address generation phase.

According to the analyses in [HsiaBla], strategy 2 has a poor
average-and-worst case performance for typical number of attributes and typi-
cal number of descriptors per attribute; strategy 3 replicates the descrip-~

tor search phase; strategy 1 does not have the shortcomings of the other two

strategies. Consequently, we choose to design and implement strategy 1 for
directory management. In addition to utilizing strategy 1 for parallel pro-
cessing of the three directory management phases for non-insert requests and
the first two phases for insert requests by the backends, we choose the
strategy of placing the CINBT entirely in the controller to be used only by
the controller. For imsert requests, the controller consults this table to
select a backend for record insertion. Thus, records in a cluster can be
distributed across the backends in order to achieve maximum parallel process-

ing by the backends for subsequent requests.

3.4.2 The Use of Abstractions and Tables for Implementation

In this section, we detail the first implementation of the directory
management of MDBS-I. As outlined in Chapter 1, this implementation does not
provide concurrency control and access control. It maintains the directory
information in the main memory only. In this implementation, cluster search
and address generation are carried out together. Thus, in the sequel, we
refer to descriptor search as phase I, and to cluster search and address gen-
eration as phase II. The input to phase I is either the record part of an
insert request or the query part of a non-insert request, and the output is a
set of descriptor ids corresponding to the descriptors derived from either
the keywords of the record or the predicates of the query in the user re-
quest. Phase II makes use of these descriptor ids to come up with the cor-
responding cluster ids and, in turn, the set of secondary memory addresses

for 1/0 operations. k

PNSRPRSI

B e

e i e R e b

PAGE 69
(A) Two Data Abstractions for Descriptor Search

In compliance with the design decision of treating data structures and
services, which are mnecessary in the phase I processing, as abstractions,
both AT and DDIT tables are enclosed in data abstractions. For AT, the ab-
straction is the attribute-table module (ATM), and for DDIT it is the

descriptor-to~descriptor—-id-table module (DDITM). This approach -equires ac-

cess to these tables via explicit calls to procedures that operate on the

tables.
(B) The Difference Between Descriptor Sets and Descriptor Groups
We now make the distinction between descriptor sets and descriptor

groups by means of an example. Let us assume that MDBS has the following
DDIT and CDT for the employee file:

10000 =< SALARY =< 15000 | D1 cl] {p2,p4,08} | Rl
20000 =< SALARY =< 30000 | D2 c2| {p1,p5,D7} | R3,R4
40000 =< SALARY =< 60000 { D3 c3| {p1,D4,D8} | R2,R6,R7
20 =< AGE =< 30 D4 ¢4 | {p3,D5,D7} | R5,R8
31 =< AGE =< 50 D5
51 =< AGE =< 70 D6
SEX = F D7
SEX = M D8

For this file, the descriptor set for cluster Cl, for example, is
{ 20000=<SALARY=<30000 , 20=<AGE=<30, SEX=M }

Now, consider the following retrieval request.
RETRIEVE (FILE=Employee) and (SALARY>=20000) and (AGE=<50) (NAME)
In referring to DDIT, we see that the predicates of the requests have the
following derivability. The predicate (SALARY>=20000) is derivable from ei-
ther the descriptor (20000=<SALARY=<30000) or the descriptor
(40000=<SALARY=<60000); and the predicate (AGE=<50) is derivable from either
the descriptor (20=<AGE=<30) or the descriptor (31=<AGE=<50). VUsing their

descriptor ids instead of the descriptors themselves, we learn that the query

of the request is derivable from the following
(D2 or D3) and (D4 or D5)

PAGE 70

So, for the employee file MDBS should look for clusters whose descriptor-id
sets contain {D2,D4} or {D2,D5} or {D3,D4} or {D3,D5}.

To distinguish sets in CDT from those derived from the predicates, we

term the aforementioned four collections of descriptor ids the descriptor-id

groups and their corresponding descriptor collections the descriptor groups.
For {D2,D4}, for example, the descriptor group is
{ 20000=<SALARY=<30000, 20=<AGE=<30 }

Thus, descriptor sets are associated with clusters and created either at the
database creation time or when there is a new cluster, whereas descriptor
groups are obtained from the query part or the record part of the request and
they change from request to request. For the above retrieval request, the
descriptor-id set of cluster Cl contains the descriptor-id group {D2,D4} and
the descriptor-id set of cluster C4 contains the descriptor-id group {D3,D5}.
Thus, the records in these clusters, i.e., {R1,R5,R8}, are retrieved, cselect-

ed and the NAME values in the selected records are returned to the user.

Phase II needs descriptor—-id groups to come up with cluster numbers and,
in turn, addresses of the records in those clusters, In the next section, we

describe how MDBS-I generates descriptor-id groups.

(C) The Generation of the Descriptor-id Groups for a Request

In order to generate the descriptor-id groups readily, we introduce the
encoding scheme of locatior parameter. From the query part of a non-insert
request, the scheme extracts the conjunctions of the query and numbers them
consecutively. Each predicate is then identified by its conjunction number
followed by its relative position in that conjunction., For example, in the
following query part of a non-insert request

((DEPT=Shoe) and (SALARY>10000)) or ((DEPT=Toy) and (SALARY<15000))
the predicate (DEPT=Shoe) has the location parameter 11, since it 1is the
first predicate of the first conjunction. Thus, for the above query the
predicates have their location parameters represented on the left hand side:

11 DEPT=Shoe
12 SALARY>10000
21 DEPT=Toy
22 SALARY<15000

wegas -

I ST AR S - A b

PAGE 71

In the case of insert requests, the keywords of the record are treated
as one conjunction, so the first number of the location parameter is always
1. Furthermore, the second number of the location parameter is not the rela-
tive predicate number, but the relative keyword number since the record to be

inserted consists of keywords instead of predicates.

(D) A Service Abstraction for Passing Descriptor-id Groups to Cluster

Search

The output of phase I, the corresponding descriptor ids, are the input
to phase II. Since the format of the input to phase II depends on the clus-
ter search strategy on CDT employed in that phase, format and strategy
changes in one of the phases can affect the other phase. In order to make
each phase immune to the changes made in the other phase, a service abstrac-
tion is placed between the two phases. This abstraction, known as directory
interface (DIRINT), accepts the output of phase I and produces the input for

phase II. All the abstractions are documented in the appendicies.

For the output of phase I, DIRINT produces a table called request

descriptor~-id table (RDIT), given a query part or a record part of the

request, Each entry of the table is an ordered pair of location parameters
and descriptor ids. Thus, an entry of RDIT indicates the id of a descriptor
derived from the predicate or the keyword and is uniquely identified by the
location parameter in the entry. If multiple descriptors are derived from a
predicate, then there are multiple entries in RDIT, one for each such des-
criptor, In this case, RﬁIT contains the descriptor ids of all the descrip-

tors derived from the predicate. In Figure 15, we depict a sample of RDIT.

(E) A Data Abstraction and Three Directory Tables for Cluster Search and

Address Generation

In phase II, MDBS-I makes use of three tables : the descriptor table,
the descriptor-to-cluster map, and the extended cluster definition table.
Each entry of the descriptor table (DT) contains the id of a descriptor that
has been defined for a given database, the number of clusters defined for the
descriptor, and a pointer to the first cluster of those defined for the des-

criptor.

Figure 15.

Location Descriptor
Parameter id

11 D4

12 Y

%

12 n7

12 D9

47 N2

Multi-descrintors
for the same
nredicate

A Samnle Request-Descriptor-Id Table (RDIT)

PAGE 72

|
|
!
J

PAGE 73

The descriptor-to~cluster map (DICM) serves the purpose of mapping des-

criptors to clusters. It is maintained in such a way that all the DICM en-
tries for a descriptor are linked together. Each DTCM entry, then, points to
a cluster definition whose descriptor~id set contains the descriptor id of

this descriptor.

The extended cluster definition table (ECDT) contains more information

about each cluster than CDT, which was discussed in Section 3.2.2 and
depicted in Figure ll. Each entry consists of the cluster number of a cluster,
number of descriptors defining the cluster, a pointer to the list of descrip-
tor ids whose descriptors define the cluster, and a pointer to the 1list of

addresses of records belonging to this cluster.

All of these tables are enclosed within a data abstraction called

cluster-definition-table module {(CDTM). A sample of the tables is depicted

in Figure 16.

(F) A Typical Sequence of Directory Management Actions for an Insert Request

When there is a request for inserting a record, the following directory
management takes place in MDBS-I. An equality predicate is constructed for
each keyword of the record. For example, the keyword <NAME=Kerr> becomes the
predicate (NAME=Kerr). Then, for each predicate, the descriptor id of the
descriptor derived from the predicate is found by using AT and DDIT. This
process 1is repeated for every keyword of the record. All the descriptor ids

are then put into RDIT via the service abstraction DIRINT.

The descriptor—id group corresponding to the record being inserted is
obtained from RDIT via DIRINT. We note that there is omnly one descriptor-id
group because each of the equality predicates constructed from the keywords
is derived from at most one descriptor. Among the descriptor ids in the des-
criptor-id group, the id of the descriptor that participates in defining the
smallest number of clusters is chosen by using DT. Let us call this descrip-

tor id Dm., By using DT, DTCM, and ECDT, all the clusters whose descriptor-id

PAGE 74

The Descriptor-To-Cluster
The Descriptor Table (DT) Map (DTCM)
“ oy >
" 3 0 ot
o ~ i bl =R ¥
o Sull we SlY
g sEleof T I A
w5 |e c 98
H I S2|EoE vocsolBEoO
9 QO jo R w80 = T
O © A YRRV o
2 U o &
U O 4
]
D2 2 — — N
L k
- . - 41

i The Fxtended-Cluster-Definition Table (ECDT) ,;
i -
. w Y
f w ol S
‘- o5 cfwi | Bef. |8a.T0.
¢ L - O - - (V)
; 0 < ¥A By g, n0 £ o onl
:,E ,.0}.4""") _Hos..-,-a HOU'U"':
53 eheo R SN R R NE!
<< S o £ @ e g
ER T @
2o e
\ e
;
§
c7 3
el sl
1
Notes: ///////, ////' :
(1) Many entries are left }
blank, although there i Addrl ~
are information in them.
(2) One of descriptors Di, j
Dj and Dk must be DN2. ' ’
Addr,]
(3) The hyphen '-' denotes Dj N 1
the end of a list.)
Dk - g

Figure 16. An Fxample of DT, DTCM and FCDT

PAGE 75

sets contain Dm are examined. If there is a cluster whose descriptor-id set
matches the descriptor-id group, then the record being inserted belongs to
the cluster identified. We note again that for an insert request, the des-
criptor-id set must match the descriptor-id group so that the record may be
inserted in the cluster whose records are derived from the same set of des-

criptors.

(G) A Typical Directory Management Sequence of Actions for a Non-insert Re-

quest

When there is a non-insert request, the following directory management
takes place in MDBS-I. For each predicate in the query part of the request,
all the descriptor ids of the descriptors derived from the predicate are
found by using AT and DDIT. All the descriptor ids are put into RDIT via the

service abstraction DIRINT.

Each of the descriptor-id groups corresponding to the query is obtained
from RDIT via DIRINT. We note that there may be more than one descriptor-id
group because each predicate of the query may be derived from more than one
descriptor. See the example in part (B) of this section. Among the descrip-
tor ids in the descriptor-id group, the id whose descriptor participates in
defining the smallest number of clusters is chosen by using DT. This des-
criptor id is designated with Dm. By using DT, DTCM, and ECDT, all the clus-
ters whose descriptor-id sets contain Dm are examined. The clusters whose
descriptor-id sets contain the descriptor-id group are therefore found. This
process 1is repeated for each descriptor-id group. We note that for a
non~insert request, the descriptor-id set does not have to be identical to
the descriptor—-id group as long as the set contains the group. Then, the ad-

dresses of the records in the clusters just found are obtained.

TR

PAGE 76

4.0 LOADING THE DATABASE

In MDBS, as in other database systems, a database creator may want to
load a database with data that exists elsewhere. Such data may reside as
files on magnetic tapes, for example. The database creator can use a

software tool, provided by MDBS and called database load, to specify the

source data files and to create a database. In this section, we describe the
design of this tool. The implementation details for the version used in

MDBS-1 are placed in Appendix C.

4.1 Three Directory Tables for Loading

A user of the database-load subsystem may want to consolidate several
related files 1into one database. In this case, there will be one attribute
table (AT), one descripter-to-descripter-id table (DDIT) and one
extended-cluster-definition table (ECDT) for the database. Alternatively,
the user may want each file to become a separate database. In this case

there will be a separate AT, DDIT and ECDT for each database.

4.2 Four Phases of Database Loading

The database load subsystem, as seen by the user and shown in Figure 17,
executes in four logical phases, First, the user specifies various charac~
teristics of the existing source files and of the database to be created and
loaded. Then the data is read from user supplied source-files and prepared
for loading. Next, the data is grouped into clusters. After clustering, the
data 1is distributed to the backends. The programs in the database-load sub-
system run mainly in the controller. However,the database-load sﬁbsystem
does include the distribution of records and directory tables to the back-

ends.

4,2,1 The Database Definition Phase

Before the source files are read, two tasks are accomplished in this

phase. The first task is descriptor definition. In this task the user spec-

PR ewe

Lai o

i ok o o

i SO i\ bl Dt . a

PAGE 77 I '

Characteristics of
Source Files and

Records from
Source
File

of Databases to be
Created and Loaded

Record
and Table
Distributio

Record
Clustering

Record
Preparation

Database
Definition

—
——

/410
<, rellE
e g ljE
Q‘S\Oﬁo’(g\Od\ 3‘7 5/ ‘Eo \
% & \% "J/ 2 IH

60\,\,62-@0«\, ’5 L./ :\ ‘
KP'OQ fé QQ/ [+ /u
oo al ' £ |
V{ ;& e
\\\ N/ N |
A\ £l
=
gescriptor DDIT
Names

~ AT Entries
—

Tables actually constructed hy the database load

r--1
(ECPT|: Tnformation needed for the construction of this

L _.J table is provided to the backends

Four Phases of Database Lloading

Figure 17.

nemew . o reite v o L

PAGE 78

ifies all directory attributes for the database. Then the user specifies the
upper and lower bounds for each type-A descriptor and the value for each
type-B descriptor. As these values are given, they are checked against pre-
viously defined descriptors to make sure there is no overlap of the ranges
and values specified. In other words, the rules governing the proper use of
descriptors given in Section 3.1.1 are enforced by the database load subsys-

tem,

Only the attribute names of type—-C descriptors are specified at this
time. The type-C sub~descriptors of the type-C descriptors will be formed
later when the actual source records are processed. As described above,
clusters may be formed for one file at a time or for all files at the same
time. When clusters are formed for all the files, the descriptor definition
procedure will be invoked only once per database; when clusters are formed
for separate files, the descriptor definition procedure will be invoked once

per file.

During execution of this task the attribute table (AT) will be built
using the data abstraction of the attribute table module (ATM). In addition,
descriptor-to-descriptor~id table (DDIT) entries for all type-A and type-B
descriptors will ©be established using the data abstraction of the
descriptor-to-descriptor~id module (DDITM). The ATM and DDITM are described
in Section 3.4.2. The type-C sub-descriptors formed from the type-C descrip-
tor entries will be added later as the source-data is examined in the next

phase.

The second task is definition of attribute characteristics for each
file. A file is defined to include records of one format only. A record
template will be built for each file. It will include an entry for each at-
tribute. Each entry will include the attribute name, data-type (e.g., in-
teger), length, etc. For each source file, the user must supply the names of
all the attributes in the records. Then for each attribute, the user must
define the data-type. If the data-type is character string, the wuser must
sperify whether the strings are of fixed or variable length. The user must

also specify the minimum and maximum values of each integer type as well as

the minimum and maximum lengths of each character string type. All of the

PAGE 79

values specified are stored in the record template by the record template

module. 1

4.2.2 The Record Preparation Phase

This phase includes the conversion of source records into the format re-

quired for intermal storage in MDBS, As each record is examined the set of

descriptors from which the keywords of the record can be derived will be de-
termined using the ATM and DDITM abstractions. In conjunction with this
task, the type-C sub-descriptor entries formed from each type-C descriptor
will be added to DDIT. Additionally, the formatted record will be appended 1

to the descriptor-id set corresponding to the descriptors derived from the

record. Both the descriptor-id set and their appended records are the input
to the next phase. At the end of this phase the attribute table (AT) and the
descripter~to-descripter-id table (DDIT) are complete.

4.2.3 The Record Clustering Phase

This phase separates the records into clusters. As 1is described 1in
Chapters 1 and 3, all the records in a cluster are derived from the same set
of descriptors. Thus, separating the records into clusters is accomplished
by sorting the records according to the descriptor ids appended to each re-

cord in the previous phase. A sort package is used for this phase.

4.2.4 The Record and Table Distribution Phase

The last phase is distribution of data to the backends. The records are
distributed to the backends one cluster at a time. For each cluster, the
descriptors defining the cluster are broadcast to the backends so that the
cluster can be defined in the extendud-cluster-definition table (ECDT) using
procedures in the cluster-definition-table module (CDTM) that was described
in Section 3.4.2. Typically, a cluster will contain many records. Within a
cluster, the records are spread across the backends. Sufficient records to
fill one disk track are sent to one backend. Then sufficient records to fill

a second track are sent to second backend. This procedure continues until

- ey e e o —— e e Yo e s o ‘

PAGE 80

all the records have been distributed. It should be noted, of course, that
the last group of records may not fill a track. The information about the
last backend and amount of track space available is kept in the
cluster-id-to-next-backend tabl. (CINBT) so that the next records to be in-

serted into that cluster can be stored in that partially filled track.

In order to distribute the data evenly across all the backends, the
first backend to receive records is chosen randomly. Then the choice of

backends goes in sequence. This distribution strategy was called the

track-splitting-with-random-placement strategy in [Hsia8la].

3 This phase also distributes the system tables to the backends. The at-

dadbac. aBieinis ZPd o cbusie mirni A 4

i tribute table (AT) and the descriptor-to-descriptor-id table (DDIT) are com-

i plete after the record preparation phase. Portions of the

oy

extended-cluster—-definition table (ECDT) will be built at each backend. The

Al

portion of ECDT at a backend will contain only the addresses of the records

i stored in that backend.

.oy

4.3 The Implementation Status

The complete design of the database load subsystem for MDBS-I is includ-
ed in Appendix C, Coding has been completed for almost all the procedures.,
Testing is completed for about half of the procedures. As described in Ap~
pendix A, Appendix C shows exactly which procedures have been completed and

which procedures have been tested. This information is also included in Sec~

tion 2.2.4 as Figure 10.

PAGE 81

5.0 THE TEST FILE GENERATION

Program-generated test data will be used for two purposes. First, we

will be testing each version of MDBS to see that it works correctly. Second,

will use program-generated data.

5.1 Three Iypes of Test Data .

The test data to be generated will be organized into files. Thus we 1

designate the program the File Generaton Package. The characteristics of a

file are specified by the user of the file generation package. Each file has

a file~name and a certain number-of-records. Each record in a database is

composed of a set of attribute-value pairs. For initial testing purposes, we
have decided to require that all records in a file have the same attributes.

Thus each record has a fixed number-of-attributes. The values of an attri-

bute in different records are restricted to a particular data-type. The pos-
sible data-types are integer, string (i.e., character-strings) and float

(i.e., floating~point numbers).

In addition to specifying the format of data to be generated, we must
also specify how particular values of each record are to be generated. The
first means of generating a value is to use a routine that generates a
random-integer, random-string or random-float value. These routines make use
of random~number generators to arrive at a value from some particular distri-
butions of potential values. Thus the values of the first attribute might be
a randomly chosen integer between 100 and 500. The value of the second at-
tribute might be a random character string. The value of the third attribute

might be a random floating~point number.

5.2 Random Test Data vs. Realistic Test Data
The data generated as just described is fine for program testing and in-
itial performance evaluation. However, since each value is generated random—

ly by a program, the test data is not selectd by the user. In order to gen-

' as described in Chapter 1, the initial performance evalugtion eXxperiments

R s

PAGE 82

erate realistic data for the user, a second form of value generation is also
supplied. In this form, a wuser may specify the data sets, say, a set of
names. Then the user can direct the file generation package to select values
for an attribute from one of these predefined sets. Once a set is defined,

its values are saved for later use.

5.3 Steps in Test File Generation

The file generation package works in three steps. First, the user de-
fines the form of the file to be generated, i.e., the number-of-records,
number-of-attributes and the characteristics of each attribute. Then initial
processing of test data sets follows. If the user wants to use sets that al-
ready exist, then the data of those sets are loaded into the main memory. If
there are new sets that the user wants to specify then the program prompts
for the values of the data of the sets, which are then loaded into the main
memory and also stored in the secondary memory for later use. After all the
sets are loaded into the main memory, the final step is the actual generation

of the records.

5.4 The Relationship of the Package to Testing Strategies and

Performance Evaluation Experiments

The first use for the file generation package is for the black-box test-
ing of MDBS as described in Sectiom 2.2.3. In particular, the system testers
will be able to generate easily any form of test databases that they require.
They will then only have to generate sample requests in order to run tests to

see if MDBS is working correctly.

The second use for the file generation package is for the type of per-
formance evsluation experiments using program-generated data as described in
Section 1.2.1(A). For these tests, the experimenters can vary the form of
the database by varying the distribution of different types of data. They

can see how MDBS performs on different types of queries and using different

numbers of backends.

ST I RO

N R Y G o)

Qi

IR

P

PAGE 83

5.5 Current Status of the Package

The file generation package is now working in its initial form and is
ready to be used for black-box testing. The package handles integer and
string data types. The subsystem which handles data sets is finished. The
routines to generate data values from a uniform distribution are complete.
The data type, float, must still be added. Routines to generate data values
from distributions other than uniform are not needed for black-box testing.

They will be added if it is determined that they are needed for performance

evaluation experiments.

The design of the complete file generation package is included in Appen—

dix B. The first version of the operating procedures manual (OPM) is also

completed,

N PP ot

PAGE 84

6.0 PLANS FOR THE NEXT MDBS VERSIONS

As we recall from Chapter 1, MDBS-I will not provide concurrency con-
trol. We also note that MDBS~I does not provide a secondary-memory-based di-
rectory management. Instead, MDBS-I utilizes the main memory for directory
management. We plan, therefore, to implement a concurrency control mechanism
in MDBS-II and an efficient directory management utilizing the secondary mem-

ory for MDBS-IV.

The basic design of the concurrency control mechanism 1is 1included in
[Hsia8lb). We will not elaborate on the basic design here except to note
that the detailed design eliminates any need for communication among the
backends other than the required exchange of descriptors during the descrip-
tor search phase of directory management. In this section, we will discuss
one of most important system issues which must be resolved before we can im~
plement the concurrency control mechaniem, i.e., how will MDBS interface with
the operating systems at the controller and at the backends? On the other
hand, we will not discuss various approaches toward an efficient directory
management based on the secondary memory since our preliminary studies on the

approaches are still inconclusive.

6.1 Interfacing with Operating Systems

Most operating systems provide mechanisms for allowing concurrent execu-
tion of different processes., These mechanisms include primitives for commun-
ication and synchronization among processes. Process communication and syn-
chronization primitives of the operating system are the basic systew primi-
tives that MDBS-II may utilize for concurrent executions of multiple re-

quests.

6.2 Two Kinds of Interfacing Approaches

Operating systems have been characterized as either message-oriented or
procedure-oriented, depending on how they implement the notioms of process

and synchronization [Laue79]. We could use either approach for implementing

-

PAGE 85

the concurrency control mechanism of MDBS-II.

Using a message-oriented operating system, there would be a fixed number
of processes (one per MDBS activity). Directory management, for example,
might be an activity, which could be implemented as a process.
Synchronization is implemented by passing messager among processes. There is
a relatively limited amount of direct sharing of data in the memory among
processes. Processes for each activity are created when MDBS is started up.

They are only deleted when MDBS is shut down.

Using a procedure-oriented operating system, there would be a varying
number of processes (one process per user). Synchronization is implemented by
direct sharing and locking of common data in the main memory. Processes are

rapidly created and deleted.

In the following sections, we describe how each of the two kinds of op-
erating system can be used for supporting concurrency control in MDBS~II. In
order to simplify the discussion, we restrict the types of requests that are
allowed, These restrictions mean that no changes to the directory informa-
tion will be made. To show the applicability of the approaches to MDBS, we
give a simplified description of the operation of MDBS using each approach.
The descriptions are based on the following assumptions:

(1) There are n users.

(2) Each user has submitted one or more requests so that there are k ac-
tive requests 1in total, The requests arrive at the controller at
times tl, t2, . . . tk.

(3) Grouping of requescs into transactions is not allowed.

(4) Only retrieve and update requests are allowed. Records being modi~
fied in an update request will not change cluster. Thus, there is no
need for concurrency control in directory management since directory
information will not change. . .

(5) Concurrency control is done at the cluster level. For example, using
a procedure-oriented operating system, locking is on clusters.

(6) The scheduling of requests that reference common clusters is done

using the concurrency control mechanism described in [Hsia8lb].

7 AD=Al11 981 OHIO STATE UNIV COLUMBUS COMPUTER AND INFORMATION SC~—ETC F/6 9/2
THE IMPLEMENTATION OF A MULYI-BACKEND DATABASE SYSTEM (MDBS), P==ETC(U)
JAN B2 D S KERRs A OROOJIs» Z SHI N00O14=75=C-0573
UNCLASSIFIED OSU-CISRC-TR-82-1

e

0 @@
II = |z
IR 22
“ = s

PAGE 86

6.2.1 Concurrency Control in MDBS-II using Message-oriented Approach

The interactions are shown in Figure 18. Requests are received at the
controller and then broadcast to the backends. At each backend, a request is
first input to the "directory management" process. This process determines
the set of clusters needed by the request. The request and the cluster
numbers of clusters determined are sent to the "scheduler" process. This
process keeps a queue of requests waiting to be processed and a list of clus-
ter numbers of clusters being accessed. This process takes a request off the
queue if it can be scheduled, updates the list, and sends the request to the
"request execution” process. The "request execution" process carries out the
request, forwards the results to the controller, and sends a message back to
the "scheduler" process indicating that the request is completed. When the
"scheduler" process receives the message from the "request execution" pro-
ce<s, it updates the list, releasing all those clusters accessed by the

completed request.

6.2.2 Concurrency Control in MDBS-II using Procedure-oriented Approach

The interactions are shown in Figure 19. In this approach each backend
maintains a process for each active user. Thus, the number of "user"
processes in MDBS-1I is the product of the number of backends and the number
of MDBS-II users. All "user" processes at one backend share a "cluster-lock"

table. Thus, there are as many "cluster-lock" tables as there are backends.

In carrying out a user request, the "user" process at each backend con-
sults the "cluster—lock" table at that backend. If the needed clusters are
not locked, then they are locked by the process. Furthermore, the request is
carried out by the process, Upon completion of the request, the process un-
locks the clusters from the "cluster-lock" table. If a needed cluster is
locked, then the process must wait until the cluster is unlocked. We note
that there is no explicit scheduler or request queue. Instead, requests are
carried out on the availability of the needed clusters as reflected from

their state in the "cluster-lock" table.

Most database system implementations have used the procedure-oriented

Notes:

(1) There are k requests
ri, arriving at
different times,
i.e., tiseees tk'

(2) All k requests are

broadcast to each
backend.

(3) There are 3
processes in a
backend.

Backend 1

Directory
Management

- —

rt?'-—ﬂ

. lController

(4) Internrocess
communications
among the
processes for
exchanging the
descriptors in
the descriptor
search phase are
not shown here.

Figure 18.

< Scheduler
_________,.

_Execution 4

A

Backend 2

Directory
Management

O

Execution -~
- 7

7/

A

Schedule
/. \
) \
N
Backend m
Directory
al
Manazement - Execution
%che ule

The Message-Oriented Desien for
Concurrencv Control in MDRS-TI

e ad i _
e B e Ve

Notes:

(1)
(2)

(3)
(4)

(5)

There are n users.
There are m
backends.

There are mxn
user processes.
There are m
cluster-lock
tables.

. Controller

Interprocess
communication
among the
processes for
exchanging
descriptors in
the descriptor
search phase
are not shown
here.

Figure 19,

PAGE 88

Backend 1

N

/

7 ~
' ~ T|Cluster-
. Lock
< : Table 1
~
—~
’
Backend 2
P ~.
. // W
/._’ — —Cluster-
Lock
AN : Table 2
N .
-~
[]
?ﬁckend m
,/’77<:j—;:-j:>\
R ~
- / ~ 4
/ o
,—K Y- — 4 cluster-
N Lock
\\ . Table m
. /’A S

The Procedure~Oriented Design for
Concurrencv Control In MDBS-TT

PAGE 89

approach. However, it has been suggested that a message-oriented approach

might be more efficient [Ston8l]. We plan to investigate both approaches

more fully before choosing one for our implementation.

- e

ARG

aws sss s sen NN TN S BN e e
¥ 3

A O Gy e i

= TR e Y

R il “e T AR~ 5 o1t . i .

PAGE 90

REFERENCES

[Astr76] Astrahan, M.M., et al., "System R: Relational Approach to Database

Management ,” ACM Transactions on Database Systems, Vol. 1, No. 3, September
1976, pp. 189-222.

[Cana74] Canaday, R.H., et al., "A Back-End Computer for Database Manage-
ment," Communications of the ACM, Vol. 17, No. 10, October 1974, pp.
575-582,

[Ferr78) Ferrari, D., Computer Systems Performance Evaluation, Prentice-Hall,
1978.

[Gibs70) Gibson, J.C., "The Gibson Mix," IBM Technical Report, TR00.2043,
June 1970.

[Gilm79] Gilmour, R.W., Business Systems Handbook: Analysis, Design, and

Documentation Standards, Prentice-Hall, 1979.

[Howd80] Howden, W.E., "Functional Program Testing", IEEE Trans. on Software

Engineering, Vol. 6, No. 2, March 1980, pp. 162-169.

[Hsia70] Hsiao, D.K. and Harary, F.A., "A Formal System for Information Re-
trieval from Files,” Communications of the ACM, Vol. 13, No. 2, February
1970; Corrigenda, Communications of the ACM, 13, 3, March 1970.

[Hsia8la] Hsiao, D.K. and Menon, M.J., '"Design and Analysis of a
Multi-Backend Database System for Performance Improvement, Functionality Ex-
pansion and Capacity Growth (Part I)", Technical Report, OSU-CISRC~TR-81-7,
The Ohio State University, Columbus, Ohio, July 1981.

{Hsia81b) Hsiao, D.K. and Menon, M.J., "Design and Analysis of a
Multi-Backend Database System for performance Improvement, Functionality Ex-
pansion and Capacity Growth (Part II)", Technical Report, OSU~CISRC-TR-81-8,
The Ohio State University, Columbus, Ohio, August 1981.

PAGE 91

[Kern78] Kernighan, B.W., and Ritchie, D.M., The C Programming Language
Prentice-Hall, 1978.

[Kaut71l] Knuth, D.E., "“An Empirical Stud of Fortran Programs”,
y

Software-Practice and Experience, Vol. 1, pp. 105-133.

[Laue79) Lauer, H. and Needham, R., "On the Duality of Operating System

Structures," in Proc. Second International Symposium on Operating Systems,
IRIA, October 1978, reprinted in Operating Systems Review, Vol. 13, Ne. 2,
April 1979, pp. 3-19.

[Ling79] Linger, R.C., Mills, H.D., and Witt, B.I., Structured
Programming - Theory and Practice, Addison-Wesley, 1979.

[Mil171) Mills, H.D., "Chief-Programmer Teams - Principles and Procedures,"
IBM Report FSC 71-5108, 1971.

[Ritc74] Ritchie, D.M. and Thompson, K., "The UNIX Time-Sharing System",
Communications of the ACM, 17, No. 7, July 1974, pp. 365-375.

[Stone8l1] Stonebraker, M., "Operating System Support for Database Manage-
ment," Communicatons of the ACM, Vol. 24, No. 7, July 1981, pp. 412-418.

[Wile77] Wilcox, C.R., "MAINSAIL Language Reference Manual”, SUMEX Computer

Project, Stanford University Medical Center, June 1977.

[(Wulf71] Wulf, W.A., Russell, D.E., and Habermann, A.N., "BLISS: A Language
for Systems Programming,” Communicatons of the ACM, Vol. 14, No. 12, De-
cember 1971, pp. 780-790.

[Your79] Yourdon, E., Structured Walkthroughs (2nd Edition), Prentice-Hall,
1979,

APPENDIX A
HOW TO READ AND FOLLOW THE PROGRAM SPECIFICATIONS

In Appendices B, C and D, a large number of MDBS~I programs are des-

cribed and specified. These programs represent those parts of MDBS~I that

have been designed and implemented at this time.

A.l Parts within an Appendix

Each appendix begins with an introduction which outlines the major com-
ponents of the design. For example, the design of test file generation, pre-
sented in Appendix B, consists of two major components: one for generating

random test data strings and the other for generating realistic test data

sets. Accordingly, each major component is described and specified in a sep~

erate part of the appendix. Thus Appendix B has Part I and Part II.

— et S —

In each part, we provide the following documentation elements:

(1) Title of the part,

(2) Name of the design,

(3) Name of the designer,

(4) Date the design was first submitted,

(5) Dates of design modifications,

(6) Statements of the design purpose, and of the input and output re-

quirements,

PAGE 93

(7) Formal specifications of the input and output, if necessary,

(8) Procedure names used in the design,

(9) Data structures used in the design,

(10) Program specification of the design.

A.3 Documentation Techniques for the Part

In the previous section, we list the various documentation elements.
They are used to describe a design. Documentation elements 1 through 5 are
written in English phrases. Document element 6 is written in prose. On the
other hand, document elements 7 through 10 can be expressed more effectively
using other means as described in Chapter 2. Specifically, we use

Backus-Naur form (BNF) for writing the specifications in document element 7.

The procedure names of document element 8 are shown in a program hierar-
chy as discussed in Section 2.2.4 and depicted in Figure 10. The use of the
hierarchy makes clear the calling sequences of the procedures unamed. The
data structures of documentation element 9 are specified in either SSL or in
the C programming language. In documentation element 10, the procedures,

themselves, are specified in SSL.

Except for the programming team that writes the procedures, other teams
will wusually not be interested in the internal logic of the procedures,
Consequently, they need only know the higher-level specifications of the pro-
cedures. SSL as described in Section 2.2.2 and depicted in Figure 9 is an
ideal specification language for revealing the design of the procedures from
a top -.o-bottom-and-layer-to-layer way. It also works well with the hierar-

chical organization of procedures.

PAGE 94

APPENDIX B
THE SSL SPECIFICATION FOR TEST FILE GENERATION

The program specification for test file generation is shown in this ap- y
pendix. The specification design is composed of two parts. In part two, all
procedures and data structures that are required to define set members and ;

then to select a particular member for a value in a record are specified. In

part one, all the procedures that are not concerned with data sets are speci-

fied. 4

B.1 Part 1 - Generating Random Test Data Strings

[* 1) Part I - Generatin% Random Test Data Strings */
/* 2) Design:GENERATE FILE(FILE-NAME) */
[* 3) Designer: D.S. Kerr */
1* 4 Datg:.Julg 23, 1981 */
[* 5) Modified ulZ 30, 1981 */
/* August 1481 */
[* August 11, 1981 ~ removed SETS to Part II, no other changes */
[* August 25, 1981 - changed identification of set from */
[* SetNumber to SetPointer in AttributeDescription */
[* January 3, 1982 - description changed, no changes to the */
;: design itself :;
[* (6) Purpose:) i . . */
[* The purpose of this system is to generate a file of test data which */
[* can be applied to MDBS. ~The user specifies the FILE-NAME */
/* NUMBER~OF-RECORDS, and the NUMBER-OF-ATTRIBUTES-PER-RECORD. The user */
/* then sYec1f1es how the values of each attribute are to be chosen: */
[* randomly from a predefined set, randomly from a range of integers, or */

/* as a random character string.

[* A set is characterized by a set-name, tygg(length) number-of-members, */
/* and the members. It will be stored in a file called set-name in a */
;: library of sets. :;
/* A distribution function, UNIFORM(min,max), must be provided. It */
%: should generate a random integer between min and max. :;
[* (7) Output: . */
[* Output is a _file of recgrds whege.each record has the form */
[* field1$field2$. . . $fieldn#)) */
[* The actual data output is a character string. $ is a special character */
[* to seperate fields, # is a special character to seperate records. A */
f: more formal definition is given below. :;
[* Notation iitem} ... means 1 or more occurrences of item */
5: item] ... means 0 or more occurrences of item :;
[* file ::= label data i . */
[* label ::= number-of-records $ number-of-attributes $ attribute-body */
[* number-of-records ::= integer the number of records in the file */
;: number-of-attributes ::= integer the number per file :;

1

l [* attribute-body ::= (attnbute-deacngnon $) */
[* attnbute—descinJ. 1= Tyge 1en7t source-domain $ distribution */
/* type ::= INTEGER | STRING LOAT | others to be added later */
[* source~domain ::= set-name | RANDOM-INTEGER | RANDOM-STRING */
[* distribution ;:= dlstnbunon—func ion(parameter-list */
/* distribution-function ::=~ UNIFORM thers to be added later */
/* parameter-list ::= integer [,integer] ... */
[* length ti= igteger in bytes of an attribute */
/* integer ::= {digit} ... usua definition */
I /* gset-name ::= filename 8 are described below */
%: filename ::= any legal RSX (UNIX? filename *;
»
[* data ::= {tecoz'd#{ cee */
[* record ::= field |$field] */
/* field ::= string actual field value */
[* string ::= string character | character */
/* character ..- dl?lt l leTtet] sTecx?IchTracTer */
[* digit ::= 9 */
l /* letter ::= 1 lette ase ec */
[* lwercaseletter : = a|b c l ln olg r|s|t u|v|w|x|¥|z */
/* uppercaseletter ::= A|B c :} L|M|IN|O 3 RIS|T|UIVIWIX|YIZ =*/
/* specialcharacter ::= | & | *) |+ 1 =1 */
[* = | - ; l] [1 ;< >] %/
[* A I */
/* */
I (8) Procedure Hierarchy for File Generation
Generate
File
. ('l'll?cl)
l Define Load Generate
File Sets Data
(n-'c:u) (TFG12) (TFT13)
l (See Procedure Structure for Sets) I '
Describe Write Write
I Attribute Label Data
(TFG111) (TFT131) (TFG132)
Write Generate Write
Attribute Record Record
l Description (TFG1321) (TFG1322)
(TFG1311)
Get Attribute Stuff
Xalue Attribute
l TFG13211) Ya ue
TFG13212)
SETS$ Random- Random~ Random~
RANDOM- Integer- Stnng- Float-
| P Uit 18
SET6) (TFG132111) TF6132112) 'I'I"Gl32113)

Raall L e o Rt "~ : -

PAGE 96

(9) Data Structures

#define FILENAMELENGTH 10 /* maximum number of characters in a file name %/
#define MAXATTRIBUTES 10 /* maximum number of attributes in a record = ¥
#define MAXPARAMS 10 /* maximum number of parameters for distribution :;

* functions

struct AttributeDescription {
char Type; /* INTEGER = “i” , STRING = “s” , FLOAT = “f~ */
int Length; /* number of bytes
int Source;/* SET = 1 , RANDOM INTEGER = 2 , RANDOM_STRING = 3 */
char SetName| FILENAMELENGTH J; /* defined only for sets */
*% struct SetDef *SetPointer; /* to the set definltion */
int Distributign; /* UNIﬁORM =1, (.. % .
int ParametersTMAXPARAMS ; /* of the distribution */

struct FileDescription { .
char FileName| FILENAMELENGTH]; /* name of the file */
int NumberOfRecords; /* to be generated in the file */
int NumberOfAttributes; /* in a record */
itruct AttributeDescription Description[MAXATTRIBUTES];

(10) Program Specifications

1. job GENERATE_FILE; o
/% Uses? DEFINE FILE - to fill in the attribute descriptionms */
* LOAD SEIS - to load the sets */
[* GENERATE DATA - to generate the actual data */
perfo DEFINE FILE;
P LOAD_ SETS;
GENERATE _DATA;

2

3

1. proc DEFINE FILE; /* f£ill in file description */)
2 read and store FileName, NumberJfRecords, NumberOfAttributes;
3 NumberOfAttributes <= MAXATTRIBUTES;

/* Uses DESCRIBE_ATTRIBUTE(pointer_to_description) - to read */
and store an attribute description */

int 1; /* attribute subscript */

4
> for i from 1 to NumberOfAttributes do . L .

6 gerform DESCRIBE_ATTRIBUTE(&FileDescription.Description[il);
g end for

end proc

4.1 proc GENERATE_DATA; o , . o
[* Uses the 1nformat10n in the file and attribute descriptions to */
/* generate the file. */

43 SRiRorm WRITE TABEL)
. erform H
4.4 erform WRITE DATA;
4.5 close File(fiTe_name);
4.6 end proc

4.3.1 proc WRITE_ LABEL; . . .
*Uses the information in the file and attribute */
/* descriptions to write the label. */

W WL Wi
« .
—OO~NOWNE WM

int i; /* attribute subscript */ .
Schar is the special character used to seperate fields

write NumberOfRecords, $char, NumberOfAttributes, S$char;
for 1 from 1 to NumberOfAttributes do
— perform WRITE_ATTRIBUTE_DESCRIPTION(
i &FileDescription.Descriptionl i]);
write Schar;
end for
0 end proc

e s ss e

fmieeia .

S e e e —s

PAGE 97

4.4.1 proc WRITE_DATA;
" /* Uses the information in the file and attribute descriptions

/* to generate and write the records. */

Uses: GENERATE_RECORD(record) returns record as a
Ccharacter string
WRITE_RECORD(record) where record is the character
string to be added to the output file.

4.4.2 int rec_no; /* index for records */

4.4.3 #char is the special character used to seperate records
4.4.3 for rec_no from 1 to number_ of_records

4.4.4 do

4.4.5 perform GENERATE REC?RD(record);

4.4.6 exform WRITE RECORD(file_name, record);

4.4.7 Erlze Fchar;

4.4.8 end for;

4.4.9 end proc

4.5.1 proc GENERATE_RECORD(record);)
output: record - character string

Uses: GET_ATTRIBUTE_VALUE(pointer_to_description) -
to determine a value (character string) for
this attribute
STUFF_ATTRIBUTE_VALUE(value, record) ~ appends
value to record.

int attr_no; /* index for attributes */))
string value; /* for a particular attribute, in string form */

WSO P W

.
wlunuio o van

for attr no from 1 to number of attributes do
value := GET_ATTRIBUTE_VALUE(
FxTéDescrxgtxon.Descrx tion[attr no]);
p erform STUFF_ATTRIBUTE_VALUE(value,record);
end for;

return{record);
end proc

.. .

ol L A oF S o
« o o v

/* end scope of FileDescription */

2.6.1 proc DESCRIBE_ATTRIBUTE(DescriptionPtr)3) ..
input: DescriptionPtr - /* points to AttributeDescription */

2.6.2 struct AttributeDescription { L.

2.6.3 char Type; /* INTEGER = “i” , STRING = “s” , FLOAT = “f */
2.6.4 int Length; /* number of bytes in string to bsAﬁenerated */
zé?.s int Source;/* SET = 1 , RANDOM_INTEGER = 2 , DOM_STRING = 3
2.6.6 char SetName[FILENAMELENGTH]; /* defined only for sets */
2.6.7%% struct SetDef *SetPointer; /* to the set definition */
2.6.8 int Distribution; /* UNIFORM =1 , ... */

%.g.?o ;nt ParametersfMAXPARAMS]; /* of the distribution */

/* enter attribute into attribute table */

2.6.11 define Type;

2.6.12 define Length;

2.6.13 define Source;

2.6.14 if Source is SET
2.6.15 then .

2.6.16 _define SetName;
2.6.17 define Distribution;
2.6.18 define Parameters;

2.6.19 end proc

PAGE 98

4.3.6.1 proc WRITE_ATTRIBUTE_DESCR™PTION(DescriptionPtr);)
* Writes the description of onme attribute into the output file */

4.3.6
4.3.6
4.3.6

.2 Schar is the special character used to seperate fields

.3 Write the description;
.4 end proc

4.5.5.1 proc GET_ATTRIBUTE_ VALUE(Descrigton?tr)3) L
Input: DescriptionPtr /* points to AttributeDescription */
returns: value character string

Uses: SETSSRANDOM VALUE(DescriptionPtr)
RANDOM INTEGER VALUE(DescriptionPtr)
RANDOM_STRING VALUE(DescriptionPtr)
RANDOM_FLOAT VALUE(DescriptionPtr) .
each returns a character string reprcsentation
of the appropriate value

4.,5.5.2 struct AttributeDescription { . ..
4.5.5.3 char Type; /* INTEGER = “i” , STRING = “s” , FLOAT = “f° */
4.,5.5.4 int Length; /* number ofkkﬁtes */
4.5.5.5 int Source;{* SET = 1 DOM_INTEGER = 2 , RANDOM_STRING = 3 */
4.5.5.6 char SetName[FILENAMELENGTH)J; /* defined only for sets *
4.5.5.7** _ struct SetDef *SetPointer; /* to the set definition */
4.5.5.8 int Distribution; /* UNIFORM =1, ..., */
Z.g.g.?o int Parameters[MAXPARAMS]); /* of the distributiom */

R /* get a value for attribute attr_no */
4,5.5.11 case DescriptionPtr.Source value
4.5.5.12 “set” : value := o

SETSSRANDOM_VALUE(DescriptionPtr);

4.5.5.13

’intgiﬁr' : value := L
DOM_INTEGER VALUE(DescriptionPtr);

4.5.5.14 “string” : value := o
RANDOM_STRING_VALUE(DescriptionPtr);

4.5.5.15 “float : value :=
RANDOM_FLOAT_VALUE(DescriptionPtr };
4.5.5.16 end case
4,5,5.17 return(value);
4,5.,5.18 end proc

4.5.6.1 proc STUFF_ATTRIBUTE_ VALUE(value,record);
input: value - Character string]
input/output: record - character string

4.5.6.2 /* puts value into record */

4.5,6.3 end_proc

4.4.6.1 proc WRITE_RECORD(file_name, record);
input: file_name, record i .
[* actually writes record to file file_name */

4.4,6.2 end proc

4.5.5.13.1 proc RANDOM INTEGER_VALUE(DescriptionPtr);

input: DescriptionPtr)

/* returns an integer value as a character string */
4.5.5.13.2 end proc

4.5.5.14.1 proc RANDOM_STRING_VALUE(DescriptionPtr);
input: DescriptionPtr]
/* returns a character string value */
4.5,5.14.2 end proc

4.5.5.15.1 proc RANDOM_FLOAT_VALUE(DescriptionPtr);

input: DescriptionPtr .

/* returns a floating point number as a character string */
4.5.5.15.2 end proc

‘ PAGE 99
B.2 Part 1I - Generating Realistic Test Data Sets

[* 1) Part II - Generating Realistic Test Data Sets */
1* 2) Design: SETS in File Generation */
[* 3) Designer: D. S. Kerr */
[* 4) Date: July 23, 1981 */
[* 5) Modified: July 30, 1981 */
[* August 1981 */
[* August 24, 1981 */
5: August 27, 1981 Minor changes after final walkthrough :;
/* (6) Purpose: */
[* A set is characterized by a set_name, type, length, NumberOfMembers, */
/* and the members. It will be stored in a file called set _name in a */
;: library of sets. :;
[* (7) Input and Output Data */
/* The form of the data in a file is_shown below. $ is a special character */
/* used to seperate fields in the file label. # is a special character */
4: used to seperate members. :;
/* set_file name ::= any legal RSX (UNIX) filename */
[* set_file ::= set_label get data */
/* set_label ::= DataType DataLength $ NumberOfMembers §$ */
[* set_data ::= { Member N */
/* Member ::= { character } ces */
[* DataType : = INTEGER | STRING | FLOAT | others to be added later */
/* Datalength ::= integer in bytes, of a set member */
/* NumberO Memb rs_::= integer the number of members in the set */
;: integer ::= { digit } ... usual defipition :f
/* character ::= d1 1t l etter | 8 ec1a1character */

digit ::= 0 314 ? 7 | 819 */
/* letter ::= lowercasel tter g e */
/* lowercaseletter ::= aTb c]d T T T I IOIBI l I I | l ' l l;l */
/* uppercaseletter ::= A|[B|C|D|E NiO § w Z */
[* specialcharacter ::= | | @ pd * | */
[* = | - {] | [| I i l l */
[* N P l& */
/* */

TR N e e e e e one oas GRS W GEN I BB OB BOR sme e
S
*

PAGE 100

(8) Procedure Structure for Sets

Get
Load Attribute
Sets Value
(TFG12) (TFG13211)
b + + +=~ = + -+
SETSM$ SETSM$ SETSM$ SETSM$ SETSMS$ SETSMS
START ~ STATUS_ LOADED IN FILE DEFINE LOADED IN FILE RANDOM _
(SET1) CHECK —~ (SET3) (SET4) LOAD AND_ AND ERKOR AND ERRDR VALUE
(SET2) SAVE™ (TFG121) (TFG122) (SET6)
(SET5)
+ + + 4=+ e ———— +
NEXT READ MEMBER READ MEMBER SAVE MEMBER _
SET FROM FILE FROM TERMINAT IN FILE
(SET21) (SET41) TSETS1) (JET52)
SET MEMBERSMS$ SET MEMBERSM$
START STORE
(sM1) MEMBER
(sM2)

3.1

WILIW oo w

Voo~ Oy PN

Wi
.

[y =
—_0

. . .
PI OO0 QNI NS LN

W WWWWWwWwWw

3.16.1
3.16.2

3.17.1
3.17.2

PAGE 101

(10) Program Specifications
proc LOAD_SETS; . . o o
[* Fox eaqﬁ set to be loaded in main memory, fill in SetDefinition. */
[* Also fill in SetPointer in AttributeDescription. Set may already */
/* be loaded for a previous attribute. It may also be in a Erev;ously */
[* defined library of sets. If it is not already defined, then it must */
/* be read from a terminal, .. */
/* Any new sets defined will be added to this library. *f
Use

s
SETSM$START - to initialize SETSM module
SETSMSSTATUS CHECK(NamePtr, Tyﬁe, Length, Status, SetPtr)
- Returns the status of set amePtr”, Also returns SetPtr, a
g01n§er to a structure of type SetDef if there were no errors.
ossible values of Status are: .)
LOADED - Already loaded in primary memory for a previous attribute
LOADED_AND ERROR - Loaded but set description and attribute
description do not match . .
IN FILE - Already defined in a file but not yet loaded in primary
memory . L .
IN FILE_AND_ERROR - Defined but set description and attribute
description do not match
NEW - Set not yet defined . .
SETSMSLOADED(NamePtr, SetPtr) - Returns SetPtr for set “NamePtr
which is already loaded in primary memory. .)
SETSMSIN_FILE(NamePtr, SetPtr) - loads set “NamePtr~ from file
into Erlmaﬁﬁ memory. Returns the corresgondzng SetPtr.
SETSMSDEFINE_LOAD AND_SAVE(NamePtr, T¥pe, Length, SetPtr) - When
set has not previously been defined, eads the set
from the terminal, loads it into prlmar{ memory, and
saves it in a file for future use. SetPf: is refurned.

LOADED_AND ERROR - Used to fix error.
IN_FILE _AND_ERROR - Used to fix error.

int Status; /* of a set takes on values shown above */

int i; /* attribute subscript */])

char *CurrentAttributePtr; /% pointer to the current attribute if a set.*/
set description *SetPtr; }* pointer to the set description *

erform SETSMSSTART;)
Eor 1 from | to NumberOfAttributes d .
if FileDescription.Description[i].Source is SET

T then /* then there are 3 cases * .
1. set already loaded in memory for a previous attribute%*/

[/* 2., set already defined in a file *

/* 3. set must be read from terminal, loaded and saved */
CurrentAttributePtr = &FileDescription.Description(il;
perform SETSMSSTATUS CHECK(CurrentAttributePtr->SetName,

CurrentAttributePtr->Type,
CurrentAttributePtr->Length,
Status, SetPtr);
case Status value
T LOADED: perform SETSMSLOADED(SetPtr);
IN FILE: perform SETSM$IN FILE(SetPtr 2;
NEW: erf%?ﬁ“SETsusnﬁFINE‘LOAD AND SAVE(SetPtr);

LOAD OR: perform LOADED AND ERROR;
IN_FILE;AND;ERROR:Rﬁz?rs?m IN FITE _AND ERKOR;
end case;
CurrentAttributePtr->SetPointer = SetPtr;
end if;
end Tor;
end proc

proc LOADED_AND_ERROR; = . .
/* May ask Tor redefinition of set name or attribute description., */

end proc

proc IN FILE AND_ERROR; = = |) .
/* May ask for redefinition of set name or attribute description. */

end proc

PAGE 102

module SETISM;
/* Values of defined constants must be determined before system :

/* 1s full GTgerat7ona1. 2/
10 /

#define FILENAMEL * maximum number of characters in a file name
#define MAXSETS * maximum number of sets allowed

#define MAXMEMBERS 10 /* maximum number of members in a set */
#define MAXSETSTORAGE 10 /* maximum storage to hold the sets */

struct SetDef {

char Name| FILENAMELENGTH];

char DataType, /* INTEGER = “i’ , STRING = “s” , FLOAT = “f° */

int Datalength; /* number of bytes */

int NumberO Mem ers, /* in the set. When set is being stored */

is the number of members currently in the set, */

char *Me?berPtr[MAXMEMBERS], /* MemberPtr[i] points to the *

character string value of the 1~th member of this set., */

struct SetDef SetDefinition[MAXSETS]; /* one for each set */
struct SetDef *SetAvailablePtr; /* points to next available set */
exported: START, STATUS_CHECK, LOADED, IN_FILE, DEFINE_LOAD_ AND_SAVE,

RANDOM_VALUE
internal: READ_] MEMBER FROM FILE, READ MEMBER_FROM_TERMINAL,
AVE_MEMBER_IN_FILE

uses START and STORE MEMBER from SET MEMBERSM module

proc START;
/* initializes SetAvailablePtr and SET MEMBERSM module */

Initialize SetAvailablePtr to initial TetDefinition.
perform SET MEMBERSM$START;

end proc

e e i e i

et . a il . b RN e

e e

— e s

PAGE 103

2.1 proc STATUS_CHECK(input : SetNamePtr, Type, Length,
. output : Status, SetPtr);
input: SeEBamePtr [* of set to be checked */
e * from attribute description */
Length /* from attribute description */

output: Status /* of set ‘NamePtr’. Possible values are:
LOADED - AlteadK loaded in primary memory
LOADED_AND ERROR - loaded but descriptions do not match
IN FILE - Klread* defined in a file = .
IN FILE AND_ERROR - Defined but descriptions don”t match
NEW - not yet defined */

SetPtr /* Pointer to structure of type SetDef. This set
/* is to be defined if there are no errors., */

/* SetName Yointed to by SetNamePtr is the same as the name of the file */
/* which holds the set. */

if there exists a set j, such that SetDefinition[j].Name matches
set name 1éenti§1ed by SetNamePtr)
then /* Check set descrlgtion and attribute description */
if descriptions matc
then
Status = LOADED;
define SetPtr to point to SetDefinition{j];
else Status = LOADED AND ERROR;
end 1T;

else /* There are still two possibilities. First, check for set */
* in library of sets *?
open file(SetNamePtr);
if ogen successful L. . L
hen /* check set description and attribute description */

read set description from file;
if descriptions match

then
S“E““ guéﬁrrékgi SetPtr)
erform . etPtr);
store set name, type, length & NumberOfMembers
in set description;
else Status = IN FILE AN _ERRGR;
end 1f;

. e s
WM W N

.
—
o

RRIMNININ NIBI NI o s ot hot ot ot ot ot pmt

else /* Since open was not successful, set must not have */
/* been previously defined */
Status = NEW,
perform NEXT SET(SetPtr);) L.
store set name, t*pe and length in set description;
[* Note that NumberOfMembers is not known until the */
* get has been read from the terminal. */

NRONRNRNN RRNDRRORNNNDRDRN N NN D

NP W NEOQOONONE LN

end if;
end 1f,;

end proc;

NN
P

WHIN
SO

internal procedure which requires access to all of SetDefinition

2.18.1 proc NEXT_SET(output : SetPtr);
/* Retfurns a pointer to the next available set. Increments :;

/* SetAvailablePtr.
/* SetPtr and SetAvailablePtr - pointers to structures of type SetDef. */

2.18.2 SetPtr = SetAvailablePtr;
2.18.3 Increment SetAvailablePtr;
2.18.4

end proc

end_scope_of SetDefinition

l 3.1 proc LOADED(input : SetPtr);)
[* actual { oe7 not have to do anything */
l input: SelPtr /* a pointer to a structure of type SetDef */

3.2 end proc

il . s b) PAGE 104
. proc IN FILE(input : SetPtr };
—input: SetPtr /* a pointer to a structure of type SetDef, the */
/* set to be input *]
Ad Reads in the actual set members from the file and */
/% stores them in set SetPtr. */

struct SetDef {

char Name[FILENAMELENGTHl; _ | .. .

char DataType; /* INTEGER = “i” , STRING = “s” , FLOAT = “f° */

int DataLength; /* number of bytes */ . .

int NumberOfMembers; /* in the set. When set is being stored */
/* is the pumber of membeys curgentl{ in the set, */

char *Me7berPtr[MAXMEMBERS ; /* MemberPtr(i] points to the. */

) * character string value of the i1-th member of this set. */

int i; /* index for set members */

o & o o o

[* read and store the members */

for i from 1 to NumberOfMembers d
perform READ MEMBER FROM FILE(SetPtr->Name , MemberValue);
perform SET MEMBERSMSSTORE MEMBER(input : MemberValue,

output : NewMemberPtr);
MemberPtr[1] = NewMemberPtr; ’
end for;
close file(SetPtr->Name);

end proc

PR S F R T o ol o T o R R Y Ty
b b b bbb O 0~ ONNIBWN

~N o &~ WO

w
.
—

proc DEFINE LOAD AND SAVE(input : SetPtr);
input: SetPtr /¥ pointer to structure of type SetDef */

[* Set has not previously been defined. Reads the set from the */
/* terminal, loads it into primary memory, and saves it in a file for */
/* future use. Stores NumberOfMembers in set description. */

struct SetDef {

char Name| FILENAMELENGTH]; _ L. ..

char DataType; /* INTEGER = “i” , STRING = “s” , FLOAT = “f */

int Datalength; /* number of bytes */))

int NumberOfMembers; /* in the set. When set is being stored */
* is the pumber of members currently in the set. */

char *MemberPtr [MAXMEMBERS]; /* MemberPtr[i] points to the *

} ?* character string value of the i-th member of this set. */

int i; /* index */
SetNamePtr /* pointer to the name of the set */

vy oo vbvavoon
.
0 & ~N VP WN

o

/* Define and load set into primary memory. */
i=0;

do
if 1 > MAXMEMBERS .
then perform ErrorRoutine; .

perform SET] RSM$STORE_MEMBER(input : MemberValue,

i output : NewMemberPtr , ErrorsStatus);

if ErrorStaEus = NO_SPACE

] then perform ErrorRoutine;

increment 1,

MemberPtr[1] = NewMemberPtr;

perforn READ_MEMBER_FROM_TERMINAL(MemberValue);
end whiTe; .
store 1 i1in NumberOfMembers in SetDef;

erform READ MEMBER_FROM_TERMINAL(MemberValue);
while (MoreMembers

“ o o o

/* Save set in file. */
SetNamePtr = SetPtr—->Name;
open file(SetNamePtr);
write set description to §11ei
[* write set members to file
for i from 1 to Nﬁg&gggf¥§mg%£§(do NameP
perform SAVE etNamePtr,
BetPtr-SMemberPtr[i T)

end for;
close fl[ei’SetNamePtr)

end proc

..

.
[PE19%) LS N1 ARINIAIRY RIRIPI RN bt ot ot bt bt ot it et Bt
—C WO NS WREOWOOS NN WN

wvowu vy i nbvaoaunnuailn. bl

.
(98]
[

PAGE 105
6.1 proc RANDOM_VALUE(input : AttributeDescriptionPtr);
/ *returns pointer to value */ .
input: AttributeDescriptionPtr /* pointer to structure of type */
/* AttributeDescription */
6.2 struct AttributeDescription {.
6.3 char Type; /* INTEGER = “i” , STRING = “s” , FLOAT = “f~ %/
6.4 int Length; /* number ofRRKtes */
6.5 int Source;/* SET = 1 DOMINTEGER = 2 , RANDOMSTRING = 3 */
6.6 char SetName| FILENAMELENGTH J; /* defined only for sets */
6.7 . struct SetDef *SetPointer; /* to the set definition */
6.8 int Distribution; /* UNITORM =1, ... % .
g.?o tnc Parameters|MAXPARAMS); /* of the distributiom */
6.11 struct SetDef {
6.12 char Name[FILENAMELENGTHI; o
6.13 char DataType; /* INTEGER = “i” , STRING = “8” , FLOAT = “f° */
6.14 int DataLen%th; [* number of bytes */
6.15 int NumberOfMembers; /* in the set. When set is being stored */
* is the number of members currently in the set, */
6.16 char *Me?berPtr[MAXMEMBEgsl; /* MemberPtr[i) points to the.
6.17 } * character string value of the i-th member of this set, */
[* Uses SetPointer, Distribution, Parameters */
[* to find the value of a random member of the set */

[* Note that different attributes may use the same set, but */
/* with different distribution functions. */

6.18 end proc

end_of_exported_procedures

start_of_internal_procedures

4.12.1 proc READ MEMBER_FROM FILE(input : SetNamePtr,
output : MemberValue);
/* Reads a member from file SetNamePtr */

4.,12.2 end proc;

5.12.1 proc READ MEMBER _FROM_TERMINAL(output : MemberValue);
[* Reads a member from terminal */ ’
/* Uses NULL to indicate no more members. */

5.12.2 end proc;

5.29.1 proc SAVE _MEMBER_IN FILE(input : SetNamePtr, MemberPtr);
input? SetNamePtr
. MemberPtr .
/* writes member into file SetNamePtr */

5.29.2 end proc;

end_of_internal_procedures 5
end module SETSM

o,

e —

PAGE 106

module SET_MEMBERSM
char SetData[MAXSETSTORAGE], ;* holds the set members - pointed to */

by MemberPtr */
char *MemberAvailablePtr; /* Points to lst avallable space in */
* SetData */
[* first character of member m of set 8 is Sethf1n1t10n[s] MeTberPtr[m] */
/* last character is STcDeflnltxon[s .MemberPt m+DataLengt
/* SetDefinition[s MemberPtr[m+DataLength1 is NULL (*/
1.1 proc START
* Initialize MemberAvailablePtr to beginning of SetData. */
1.2 end proc
2.1 proc STORE MEMBER(input :MemberValue,

output : NewMemberPtr , ErrorStatus);

[* MemberValue is the value to be stored. It is stored in the next */
[* available spaces in SetData. NewMemberPtr is returned after it */
[* is set to point to this value. MemberAvailablePtr is incremented.*/

[* ErrorStatus is set to OK. If there is no room, then ErrorStatus */
/* is set to NO_SPACE. */
[* It should be noted that only STORE MEMBER requires access to all ¥*/
[* of SetData. All other routines Eet pointers to a particular */
/* value in SetValue and use only that particular value. */
/* SetData looks like */
[* */
1* */
;: | value NULL value NULL . . . last-value NULL unused | :%
[* - */
/* */
/* where MemberAvailablePtr points to the first available space. */

2.2 if there is not emough space

2.3 then ErrorStatus = NO_SPACE;

2.4 else

2.5 ErrorStatus = 0K;

2.6 Store MemberValue in SetData from MemberAvailablePtr on;

2.7 NewMemberPtr = MemberAvailablePtr;

2.8 increment MemberAvailablePtr;

2.9 end if

2.10 end proc

end module SET_MEMBERSM

PO o

———

o

c.l1 P

The

procedures for the database load subsystem.

APPENDIX C

THE SSL SPECIFICATION FOR DATABASE LOAD

The program specification for database load is shown in

tions for the Record Template module.

NP WON) -

(6)

7

art 1 - Database Load Subsystem

Part 1 - Database Load Subsystem */
Design: DATABASE LOAD UTILITY */
Designer: P. R. Strawser */
Date: August 25, 1981 */
Modified: September 16, 1981 i */

Changes marked with “**“ in SSL. :;
Purpose: */

The database load utility gives MDBS users */
the cagablllty to load pre—exzst1Q§ data from *
other database systems or other files into */
the MDBS system. This utility is designed to *
run on the MDBS controller. */
The files being loaded are assumed to be of */
fixed length records, all records in a file */
having the same format. The files are also */
assumed to be resident at the controller. */
The database load utility, 981n§ these files */
and other information suxglled y the user, */
constructs the DDIT and tables required by */
the directory management subsystem. It also */
formats the lnput records as required for *
storage in the database, organizes the records*/
into clusters, and distributes the records and*/
the directory management data to the backends.:/

Qutput:) */
Qutput is DDIT and AT information for the */
directory management subsystem, and records */
formatted for storage at the backends. */

PAGE 107

appendix,
specification design is composed of two parts, Part one includes all

Part two includes the specifica-

P RO ——

P S

PAGE 108

(8) Procedure Hierarchy for Database Load

vY FILEPREP
(DBL11)
/

v/ DBLOAD (DBL1)
vV DESCRDEF

vV DBPREP
(DBL111)

VY TYPEADEF (DRL12)

(DBL1111)

VY TYPEBDEF
(DBL1112)

Y'Y RTEMPDEF

/Y TYPECLST (DBL1113) (DBL112)

SRTCLUST
(DBL13)

/Y REVDESCR (DBL1114)

V¥ ATTRCHAR

/¥ SRCHCLST (DBL1121)
(DBL1122) ¥ SRCHCLST (DBL1122)

v¥ REVRTEMP (DBL1123)

v DRVKWORD /Y LOADDATA

v DRVAORB (DBL1131) (DBL113) (DBL14)

v DRVC (DBL1132Y

Y PUTINLST (DBL1133)

VY PROCLUST

BLDSRT (DBL1134) (DBL141)

—— Procedures on the left
of a solid line are the REVTYPEC (DBL1135)
subprocedures of the
procedure on the right / GETRAND (DBL1411)

of the solid line. / DISTRREC (1412)

v Coding is completed; walkthrough
is completed; test is to start.

VY Testing is completed also.
Y NEWCLUST

~-—~ Procedures on the left of a dotted (DRL14121)

line are also the subprocedures of
the procedure on the right of the
dotted line.

PAGE 109

(9) Data Structures

Data structure definitions are included at the beginning of each procedure

definition in (10) below.

(10) Program Specifications

First Level Specifications for Database Load

[D

1. subsystem DATABASE LOAD; /* DBLOAD (DBLL) */

/* Prepare data for initial load into the database. */

[* Define descriptors and prepare records for */
/* loading into the database. */

if clusters to be formed at file level
then
perform FILE PREP

else
erform DATABASE PREP
end 1l

NSO WN

/* Sort data into clusters. */
8. perform SORT_INTO_CLUSTERS;

/* Load data into database store. */

) 9. perform LOAD_DATA;
10. end subsystem;

PAGE 110

Second Level Specifications for Database Load

4.1 proc FILE PREP; /* FILEPREP (DBL11l) */

/* Prepare files for loading to the database store. Clusters will be */
/* defined at file level. */

4.2 array type-C_attr_names; [* Attribute names over which type-C */
] i /* descriptors will be defined. *
4.3 arglist = (clustering_level, /* "FILE" . . *
record_type, /* {¥pe records in the current file. */
[* (Payroll, Employee, Inventory ...)*/
database_name, /* Generic name for this database */
, /* e.g. PERSONNEL, PARTS, CONTRACTS. */
pointer to type-C_attr_names);
4.4 scalar atpointer [* Pointer to instance of AT */
. [* created for this task. */
rectemppointer; [* Pointer to RTEMP for current */
[* file. */
4.5 arglist.clustering_ level := "FILE";
4.6 get arglist.database _name from terminal;
4.7 while more files to be loaded do
4.8 begin
4.9 get arglist.record type from terminal;

[* Define all descriptors for this file. */
/* Argument list constructed as above is gassed to */
/* the DEFINE DESCRIPTORS procedure, which returns #*/

/* a pointer To the instance of AT created for this*/
/* task. */
4.10 perform DEFINE DESCRIPTORS(arglist,
atpointer);
4.11 arglist + atpointer;

/* Define record structure via a record template. */
[* Argument list constructed as above is passed to ¥
[* this Erocedure, which returns a pointer to the */
[* record template created for this file. */

4.12 perform DEFINE_RECTEMP(arglist,
rectemppointer);

4,13 arglist + rectemppointer;

/* Examine each record in the file, and determine */
/* the set of descrigtog ids representing descriptors */
/* from which keywords in that record can be derived. */
[* Create records to be sorted into clusters. */
/* Argument list constructed as above is passed to */
/* this procedure. *

4.14 perform DERIVE DIRECTORY_KEYWORDS(arglist);
4.15 end while

4.16 end proc;

l PAGE 111
l 6.1 proc DATABASE PREP; /* DBPREP (DBL12) */
/* Prepare data for loading to the database store. Clusters will be
defined at database level. */
I 6.2 array type-C_attr_names; /* Attribute names over which type-C */
]] descrlxtors will be defined. *
6.3 arglist = (clustering_level, /* "DATABASE”) *
record_type, [* z¥pe records in the current file. */
/* (Payroll, employee, inventory ...)*
database_name, /* Generic name for this database */
, * e g. PERSONNEL, PARTS, CONTRACts. */
pointer to type-C_attr_names);
l 6.4 scalar atpointer, [* Pointer to instance of AT */
/* created for this task. */
rectemppointer; /* Pointer to RTEMP for current */
' /* file. */
6.5 arglist.clustering_level := "DATABASE";
' 6.6 get arglist.database_name from terminal;
[* Define all descriptors for this database. */
/* Argument list constructed as above is ﬁassed to */
[* the DEFINE DESCRIPTORS procedure, which returns *
[* a pointer To the instance of AT created for this*/
/* task. *
l 6.7 perform DEFINE_DESCRIPTORS(arglist,
atpointer);
6.8 arglist + atpointer;
' 6.9 while more files in this database do
6.10 begin
6.11 get arglist.record_type from terminal;
l /* Define record structure via a record template. */

/* Argument list constructed as above is passed to */
/* this grocedure, which returns a pointer to the ¥/
! /* record template created for this file. */

6.12 perform DEFINE RECTEMP(arglist,
rectemppointer);

/* Examine each record in the file, and determine

[* the set of descriptor ids representing descriptors
/* from which keyworSs in that record can be derived.
/* Create records to be sorted into clusters.

/* Argument list constructed as above is passed to *
/* this procedure. *

* ok % %

B et

6.13 arglist + rectemppointer;

' 6.14 perform DERIVE_DIRECTORY KEYWORDS
(arglist7;

6.15 end while

6.16 end proc;

8.1

8.2
8.3

8.4
8.5

9.1

9.2
9.3

9.4
*k

9.5

9.6

9.11

9.12 end proc;

proc SORT_INTO_CLUSTERS;

PAGE 112

/* SRTCLUST (DBL13) */

[* Records to be sorted have the form: */
/* record = (descr_count, Number of descriptors in descr_ids*/
/*] list which follows. T
[* descr_ids, List of descriptor ids from which */
[* this record can be derived. *
[* database_record); Record formatted into form */
[* required for storing in the data— */
/* base store. */

open files;

sort records in ascending sequence b

descriptors

close files;

_1ds withln descr_count;

end proc;

/* LOADDATA (DBLl4) */

/* Distribute clusters of data across the multiple backends */
/* according to the track-splitting-with-random-placement */
/* data placement strategy. *

proc LOAD_DATA;

scalar cdtpointer; /* From CDTM module CREATE, */

record = (descr_count, [* Number of descriptors in descr_ids*/
[* list which follows. *

descr_ids, [* List of descriptor ids from which *

[* this record cam be derived. *

database_record); /* Record already formatted into form*/

/* required for storing .s ihe d7.r- */

/* base store. *

system_info = (number_ of_ backends,

backend_address
track_capacity)

/* Create an instance of CDT f

[* This data assumed to be */
es, [*available in some system*/
; [* generation file accessi-*/

* ble through some module */
/* called SYSDATA. */

or this task. The CREATE function of*/

/* the CDT module returns a pointer to the instance of CDT created */
/* for this database. */

perform CDTM$CREATE(cdtpointer);
/* Get from the system the information required for this task. */
perform SYSDATASINFO(system_info);

/* Read the first record. */

open file of sorted records and read first record; 1
while more clusters in sort file do i
Begin 4

perform PROCESS_A CLUSTER(record,
sgstem_znf s
:] cdtpointer);
end while

Third Level Specifications for Database Load

4.10.1 proc DEFINE DESCRIPTORS /* DESCRDEF (DBL111) */

4.10.2

S
ot et ot Bt ot ot
OCOOOOO
oo\:a\bw\u

& s E
. & o .

L rond Lo

o OO0 O o

& WO

&S
L I 3 L]

e
OO
Pt st bt
~SO W

Rl ¥
. L] £)

ot et s
[T =]
R s b
[=]1V-T, .

4.10.21

4.10.22

4$.10.23
4.10.24
4,10.25 end

(input® inpointer(clustering level,
record_type,
database name,

) Sype—C_aftr_pames),
output: atpointer);

Define descriptors for this file or database, and store them */
in the DDIT created for this task, i */
Input is a pointer tg9 an list which contains *x/
clustering level ("FILE" or "DATABASE"), record ;yge, */
database_name, a list of attribute names over which type-C*/
descriptors are to be defined. */
Output is a pointer to the instance of AT created for */
this task. */

scalar name, [* Name to identify AT */
atpointer; [* Pointer to instance of AT */
/* created for this task. */

if inpointer.clustering_level = "database”
then

name := inpointer.database_name; /* NOTE: may also want
) 1* to indicate c{uster— */

name := inpointer.record_type; /* ing level here.

end if;

else

/* CREATE function of module ATM returns a pointer to */
/* the instance of AT created for this task. */

perform ATM$CREATE(name, atpointer);

if wunsuccessful create
then

display message
else

begin

/* First all type-A descriptors. */
while more type-A descriptors do

~ perform DEF TYPE-A_DESCR(atpointer);
end while;

/* Then all type~B descriptors. */

while more tﬂg§~8 descrlgtors do
erform _TYPE-B_DESCR(atpointer);

end while;

[* Build an array of attribute names over which type-C */
/* descriptors are to be defined when input is read. */

perform LIST_TYPE-C_ATTR_NAMES

(inpointer type-C_attr_names,

atp01nter5;
/* Allow user to review descriptors for accuracy. */
perform REVIEW_DESCRIPTORS .
(inpointer,type-C_attr_names,

atpointer);
return{atpointer);

end if;

roc;

PAGE 113

*/
*/

4.12.1

4.12.2

4.12.3

4.12.4

et ot et Pt et et ok it et

L]
bt bt = O OO O N

NN N
WO

s &
s 8 & o ° & .
e & 8 & 0 & o

4,12.14

S8
" e s 8 o
P et ot et B
NN
L] L] L] . L]
Pt ot Pt et ot
WO~

proc DEFINE_RECTEMP R
(input® inpointer(clustering level,

PAGE 114

/* RTEMPDEF (DBL112) */

record_ type,
database_name,
t{peTC_gttr_pames,
atpointer),

output: rectemppointer);

[* Define the structure of the records in this file by */
/* building a record template. */
/* Input is a pointer to an list which contains */
[* clustering_level ("FILE" or "DATABASE"), record_type, */
[* database_name, a list of attribute names over whic tyRe—C*I
[* descriptors are to be defined, and a pointer to the T. */
/* Output is a £01nter to the record template created */
/* for this task. */

scalar record_type,
attr_name,
descx_type,

rectemppointer, /* Pointer to RTEMP created for

dditpointer,

duplicate,
matched
successful;

/* Attrlist to be returned from GET_ATTRIBUTE_CHARACTERISTICS *
/* procedure has the form: *

/* Type of records in this file. *
/* Attribute name. *
/* A, B, C, or NOTFOUND,

*
*
* this task.

/* Pointer into the DDIT returned *

[* from the FIND function of AT. *

[* Indicator - TRUE or FALSE. *

[* Indicator - TRUE or FALSE. *

/* Indicator - TRUE or FALSE, *

attrlist = (attr_name, attr_data_type, attr_format, */
attribute_characteristics);

record_type := inpointer.record_ type;

[* Invoke the CREATE function of module RTEMPM to */
[* create an record template for this task. A */
/* pointer to the template is returned. */

perform RTEMPM$CREATE(record_type, rectemppointer);

if create is not successful

then

display message;

else
egin

while more attributes to be defined do

begin

get attr_name from terminal;

/* Check to see whether this attribute name is :;

* unique within this record.

perform RTEMPM$DUPCHECK(rectemppointer,

attr_name
duplxcate’;

/* If it is unique, then get the characteristics*/
/* of the attribute. */

if duplicate is TRUE

display message

then
else
begin

/* Get

attribute characteristics, and return a */

/* list of attribute characteristics, attrlist. */

4.12.20

GET_ATTRIBUTE_CHARACTERISTICS
(attr_name,
attrTist);

perform

PAGE 115

[* Determine whether there is a descriptor defined */

/* over this attribute name., If
/* record template entry to indicate tige.
[* mark will be used in DERIVE_DIRECTO

/* procedure.

perform ATMSFIND(attr_name,
Hégcr_gyge,
dditpointer);
if a descriptor has been defined
for this attribute name
* descr_type not = NOTFOUND */
then .
attrlist + descr_type;
else

egin
"‘grger orm SEARCH_TYPE-C_ATTR_NAME

inpointer.type~T_attr_names,

attr_nape,
. matched);
if matched is TRUE
then)
attrlist + “C”;
else .
attrlist + nullcharacter;

end begin; /* Not type A or B, */
end if; T pA

/* Add information about this attribute to the
/* template.

f there 1is, mark

* If descriptor defined. */

the*/
This */

_KEYWORDS */
*/

]

4.12.,35 perform RTEMPMSINSERT(rectemppointer,
attrlist,
successful);

4,12.36 if successful is FALSE

4.12.37 then

4,12.38 display message;

4.,12.39 end if;

4,12.40 end while; /* While more attributes to be defined. */

4.12.41 end begin;

/* Allow the user to review the entire template. */

4.12.42 perform REVIEW_RECTEMP(rectemppointer);
4.12.44 end if;

4,12.45 end proc;

4.14.1 proc DERIVE_DIRECTORY_ KEYWORDS /* DRVKWORD (DBL113) */
(input? inpointer(clustering level,
record_type,
database name,
type-C_attr_names,
atpointer,
rectemppointer));

KAt - Al S S e (%

/* Input is a pointer to a list of arguments which contains */

[* clustering level ("FILE" or "DATABASE"), record type, *

[* database name, type-C_attr names, (a list of attribute */

[* names over which type-C descriptors are to be defined), a*/

5: gq}nter to the AT and a pointer to the RTEMP for this :;
ile.

*
/
IAd
/*
/*
/*
4.14.2
4.14.3
4.14.4
4.14.5
4.14.6
4.14.7
4.14.8
4.14.9
4.14.10
4.14.11
4.14.12
4.14.13
4.14.14
4.14.15
4.14.16
4.14.17
4.14.18
4.14.19
4.14.20
4.14.21
4.14.22
4.14,23
4.14.24
4.14.25
4.14,26

The procedure reads records from the source file(s). */
For each record, the set of descriptors from which the */
record is derivable is determined, the record is format- */
ted into the form required for storage in the database, */
and a count of descriptors, the descriptor list, and */
the formatted record are written to a gxle for sorting. ¥*/
scalar descr_id, * Descriptor id. . */
descr_count, /* of descriptors derived. */

field _count, /* Indicates nth field of record.*/
field_value, [* Value of nth field. . *
filename; /* Name of current input file. */

array descriptor_ids; /* List of descriptors derived.*/

predicate = (attribute, "=",k value); /* Equality gredicate */
* to test derivation of keyword.*/

input_record = (field_valueSfield value$... field value);

rectemp_entry = (attr_name, attr_data_type, lower_bound,
upper_boun?* degcp_1nd¥; /* Entry re- */
trieved from RTEMP, */

open output file for records to be sorted

while more files of input data do
begin . .
get filename from terminal;
open file filename;

while more records in file do

egin
7% Initialize counts, get first record. */
descr_count := 0;
field_count := 0; . .
get input_record from file filename;

while more fields in record do
begin

/* Get a field value from the record. */

field_value := next field_value from input_record;
field_count := field_count + 1;

[* Get the entry from the record template */
* which contains attribyte name and char-*
/* acteristics of that field. *

perform RTEMPM$GETENTRY(inpointer.rectemppointer,
field_ count,
rectemp_entry);

if rectemp_entry.descr_ind not = null
then

begin

PAGE 116

/* Build a keyword predicate to be used to test */

[* whether current attribute-value pair can be
/* derived from any descriptor.

predicate.attribute := rectemp_entry.attr_name;
predicate.value := field_value;

[* Determine whether keyword is derivable.
/* Descriptor id will be updated by the

[* DERIVE procedures called below. If the
/* descriptor id is null, the keyword is not
/* derivable,

PN

PAGE 117)

’

7 if rectemp_entry.descr_ind = “x
7: x” indicates that descriptor is type A or B.*/
en
perform DE?IVE FROM_A_OR_B_DESCR
predicate, .
inpointer.atpointer,
descr_id);

N N
Do
-

.30 else
.31 perform DE%IVE FROM_C_DESCR
predicate, .
inpointer.atpointer,
. descr_id);
4.14.32 end if;]

[* 1f it is derivable, insert the corresponding */ R
[* descriptor id into the list of such ids being*/
/* built for this record. */

4.14.33 if keyword predicate is derivable

4,14.34 ‘then i 3

4.14.35 egin

4.14.36 _'&F_ger orm PUT_DESCR_ID_INTO LIST .
(descr_id,

descriptor_ids
descr_count);
1 descr_count := descr_count + 1;

8 end if;

l 4.14.39 end if;
4.14.40 end while; /* more fields loop */
4.14.4]1 perform BUILD_SORT_RECORD(descr_count,
descriptor_ids,
input_record,
)) rectemgp01nter);
4,14.42 end while; /* records in file loop */
I 4.14.43 close file filename;
4.14 .44 end while; /* files to be sorted loop */

[* Review the list of type~C attribute names, and create */
/* null AT entries where no descriptors have been defined.*/

4.14.45 perform REVIEW_TYPE-C_ATTR_NAMES
type~C_attr_names,
atpointer);

4,14.46 close file for sort records;

4.14.47 end proc;

9.10.1 proc PROCESS_A_CLUSTER /* PROCLUST (DBL141) */
ok input: record,

szstem_xnf ,

¢ §:

tpointer

Process a cluster for loading into the database store. */

Ingut is the first record of a cluster, some system */

in zrmatxon, and a pointer to the CDT created for this :;

task.

Records hav? the form: . . */
descr_count, descriptor_ids, database_record)*/

b /

/

-~ ~
LR R B 2 4

record =

EARSELITIN 31 T 19 3ot B A o o DS VA o7 s . 3o

PAGE 118

deke [* System information is a list of backend addresses. */
ok /* “system_info = (number_of backends, */
. ok / backend_addresses, */
; [* track_capacity); */
§
: 9.10.1 scalar next_backend_index, /* Index into array of back-*/ ’

, . o [* end addresses in system info*/
capacity remaining, [* Capacity remaining in the*
! /* track of the next backend*/
[* at which records of the */
[* current cluster are to * 1
/* be stored. Used to update*/ }
CINBT. */

cluster_number;

/* Randomly select a backend at which to begin distribution of */
/* records in the first cluster, and set the track capacity.

9.10.2 perform GET_RANDOM BACKEND_START

bl system_info.number of backends,
next_backend_index7;

9.10.3%*% capacity := system_info.track_capacity;

/* Generate a Cluster Definition Table entry for the new cluster. */
/* The following procedure returns the cluster number. */

9.10.4 /* From somewhere as yet undefined, get a new cluster number. */
9.10.5 perform CDTMSINSERTNEWCLUSTER)]
** (record.descriptor_ids,

cdtpointer,
cluster_number);

[* Physically distribute the data over the multiple */
/* backends accordxn& to the selected data placement */
/* strategy. The DISTRIBUTE RECORDS procedure, starting*/
[* at a randomly selected backend, evenly distributes */
/* data across the backends in track-size lots., The */
/* address of the next backend and the amount of stor- */
/* age available there are returned from the procedure */

k [to be used to ugdate the CINBT. Note that the */
k [records are read ahead, so that upon return from */
vl [* the DISTRIBUTE RECORDS procedure, the first record */
** /* of a new clustér will have replaced the record ori- */
% * ginally passed. */
9,10.6** perform DISTRIBUTE RECORDS(record, i

Jok next_backend_index,

*k s¥stem_1nfo,

** cluster_number,

capacity_remaining);

/* Update the Cluster—ID-to-Next-Backend-Table with the address*/
[* of the next backend into which records belonging to this */
/* cluster should be inserted, and the remaining capacity at */
/* that backend. */

9.10.7 perform CINBTMSUPDATE(cluster_ number,
next_backend_index

capac1ty_remaxning5;

9.10.8 end proc;

Gl aEm e

4.10.16.1

4.10.16.2

4.10.16.3

4.10.16.4

Pt bt ot bt et et
OO0 OO
.
=IO~ Ut

S Y
» » L] »

bt bt ot Pt et ot
ooy oo
L] .

4.10.16.11
4.10.16.12

4.10.16.13

" e
bt ot et Bt et et ot ot
AR OO

SEEER eSS
. . L] .
OCO0O0 OO0
L] L]
)
NI bt bt ot et ot et
=OWOoD oM NS

Bt Pt Bt Pt Pk it Pk ot

OO O
. .

N

N

S8 o
ot et ot s
OO0 O
———
L]

.
NN
W

4.10.16.26

¥ S o
- L I
Jomss o s
[=Y~T-}
- . o
Yt Pt b
[Y- X
.«
5] X1 1
WP~

PAGE 119

Fourth Level Specifications for Database Load

proc DEF_TYPEA_DESCR /* TYPEADEF (DBL1111l) */ i
(input: atpointer); .

[* Define all type A descriptors. Input is a pointer to */
/* the instance of AT created for tiis task. */ j

scalar attr_data_type, /* Character, integer, etc. */
descr_id, [* Descriptor id. */
descr_type, [* A, B, C, or NOTFOUND. */
attr_name, /* Attribute name. */ 1
duplicate, /* Indicator, TRUE or FALSE, */
dditpointer; /* Pointer into the DDIT, either */
/* to first descriptor defined */

[* for this attribute or to last *

/* descriptor inserted. */

descrxptor = (lower_bound, upper_bound);

'other" descriptor will g defined for each attribute */
/* over which descriptors are defined, to represent all those */
/* keywords which are not deriveable from any other descr1ptor*/
/* detined for that attribute. */
other_descriptor = (lower_bound, upper_bound);

/* Initialize "other" descriptor bounds. */
other_descriptor.lower_bound = null;
other_descriptor.upper_bound = null;

get attr_name from terminal;
get attr_data_type from terminal;
while more descriptors for this attrlbute do

begi
5* NOTE: Limits supglled for the descriptor must */
/* be right-justified, padded on left. */
get descriptor.lower_bound from terminal;
get descriptor.upper_bound from terminal;

check upger and lower bounds to insure that data 1is
the correct type;

if data not of correct type
then . .

1 display an informational message;
else

begin
bkl duplicate := false,

descr_ty K = nu}
perform TMQFIND attr_name,
dditpointer,
pointer to descr_type);

if this attribute name found in AT
7* descr_type not = NOTFOUND */
then

egin

perform DDITM$DUPCHECK
descriptor,
dditpointer,
duplicate);

if this descriptor exactly duplicates
another or the range overlaps another
* duplicate is TR
then
d1splay message;

/* Get descr_id from somewhere as yet */
/* undefined,

4.10.16.30

et ot et
[=Y=T-1-}
PP
Load and o o
oo

PP
[PSTULTOSTON]
DN -

Lol of of o
* o s o

4.10.16.35

4.10.16.36

4.10.16.37

PAGE 120

perform DDITM$INSERT(descriptor,
ditpointer,
) descr_id);
end if

end begin
else

egin
T* Tnsert type "other" descriptor for each new */
[* attribute name added to the AT.] *
/* Get descr_id from somewhere as yet undefimed.*/
perform DDITMSINSERT(other_descriptor,
gdltpoggger,
. escr_id);

/* Now insert the new attribute name. */ '
perform ATM$INSERT(attr'ﬁ§me,

. dditpointer);
/* Now insert the new descriptor defined here. */

[* Get descr_id from somewhere as yet undefined.*/
perform DDITMSINSERT(descriptor,

dditpointer,
d bexi descr_id);
end begin;
end 1f; 5* lin AT) */
end begin;
end 1if; 75 {not of correct type) */

end while;

4.10.16 .43 end proc;

4.10.19.1

4.10.19.2

4.10.19.3

4.10.19.4

proc DEF_TYPEB_DESCR

/* TYPEBDEF (DBL1112) */
input: atpointer);
/* Define all type B descriptors. Input is a pointer to :;

* the instance of AT created for this task.

scalar attr_data_type, /* Character, integer, etc. */
desct_id, [* Descriptor id. */
descr_type, /* A, B, C, or NOTFOUND. */
attr_name, [* Attribute name. */
duplicate, [* Indicator, TRUE or FALSE, */
dditpointer; [* Pointer into the DDIT, either */

/* to first descriptor defined */

/* for this attribute or to last */

descriptor = (1ower~bound,_quer_pound); .

[* An "other" descriptor will be defined for each attribute */
[* over which descriptors are defined, to represent all those */
/* keywords which are not deriveable from any other descriptor*/
/* defined for that attribute. */

other_descriptor = (lower_bound, upper_bound);

/* Initialize "other" descriptor bounds, */
other_descriptor.lower_bound = null;
other_descriptor.upper_bound = null;

get attr_name from terminal;

et attr_data type from terminal; .
7* NOTE: L1m1ts'sgp511ed for the descriptor must */
/* be right-justified, padded on left, */
while more descriptors for this attribute do

egin
escriptor.lower_bound := null; .
get descriptor.upper_bound from terminal;

check upger bound to insure that data is
of the correct type;

——

4.10.19.14
4.10.19.15
4.10.19.16
4.10.19.17
4.10.19.18
4.10.19.19*%
4.10.19.20
4.10.19.21
4.10.19.22
4.10.19.23
4.10.19.24
4.10.19.25
4.10.19.26
4.10.19.27
4.10.19.28
4.10.19.29
4.10.19.30

4.10.19.36

4.10.19.37

4.10.19.38

4.10.19.39
4.10.19.40

4.10.19.41
4.10.19.42

PAGE 121

if data not of correct type
then

display local message;
else

begin
duplicate = fals

desc:_tyge 1® Ll
perform ATMSFIND(attr_name,
dditpointer
pointer to descr_type);

if this attribute name found in AT
then

begin .
perform DDITM$DUPCHECK(descriptor,
ddxtpoxntgr,

. . . duplicate);

if this descriptor exactly duplicates
another or the range overlaps another

then
display message;

else

[* Get descr_id from somewhere as yet */
/* undefined.) %*
perform DDITM$INSERT(descriptor,

dditpointer,
) descr_id);
end if;
) end begin;
else

begin .
[* Insert type "other" descriptor for each new */
[* attribute name added to the AT.) *
* Get descr_id from somewhere as yet undefined.*/
perform DDITMSINSERT(other_descriptor,
ddltpo;nger,
. descr_id);
/* Now insert the new attribute name. */
perform ATMSINSERT(attr_name,

.3 .
] dditpointer); .
[* Now insert the new descriptor defined here. */
/* Get descr_id from somewhere as yet undefined.*/
perform DDITMSINSERT(other_descriptor,
dditpointer,
) descr_id);
end begin;

end if /* (in AT) */
end begin

end if; /* (not of correct type) */

end while;

4.10.19.43 end proc;

4.,10.21.1 proc LIST _TYPE-C_ATTR_NAMES /* TYPECLST (DBL1113) */

4.10.21.2
ok

(input: t{peTC atgr_pames,
. atpointer);
[* List all the attribute names over which type-C descriptors */
[* are to be defined. Input is a list for attribute names *

[* over which tzpe—c attributes are to be defined, and a */

/* pointer to the AT. */

scalar index, /* Index to list of attribute names. */
attr_name, .

duplicate, /* Indicator - TRUE or FALSE. */

dditpointer,/* Pointer into DDIT returned from ATM*

* FIND function. */

descr_type; /* A, B, C, or NOTFOUND, */

PAGE 122

index := 1; /* Null indicates end of list. */
type~C_attr_names[index) := null;

OO0 OO
L]

while more type-C descriptors do
begin ;
get attr _name from terminal; i
perform “ATMSFIND(attr_name, '
dditpointer
pointer to &escr ty g

4.10.21.9 if a type-A o; type-B descr1ptor is already deflned

ver this attribute nam

7* descr_type not = NOTFOUND */
then ;

1 display error message;

0
1
%
begin i
Gk duplicate = FALSE "
5 perform SEAR?H TiPE—c ATTR_NAMES
type-C_attr_names,

; attr name

dupllcate3
%% duplicate is FALSE

16
17
18 be in

%3 ge—c attr names[1ndex] ;= attr_name;
21

22

S8 B>
e s & 9

RN NN
L Y
CO~NOMN P

7= index + },
_¥pe-C attr_names[index] := null;
end if;

.23 end 1f; i
.10.21.24 end while;

Lol kol ol ol o oF o)

4.10.21.25 end proc;

4,10.22.1 proc REVIEW_DESCRIPTORS /* REVDESCR (DBLl114) */
(input: type-C_. atgr_pames,
atpointer

/* S TUB */
4.10.22.? end proc;

4.12.19.1 proc GET ATTRIBYTE CHARACTERISTICS /* ATTRCHAR (DBL1121) */
input: attr_name, attrlist);

[* Get characteristics of an attribute for and entry */
[* in the record template.

[* Input to the procedure is an attribute name and a */
/* list for attribute characteristics.

/* The values of those characteristics will be col- :/

/* lected in this procedure. /
[* Attribute list has the form: */
[* attrlist = (attr_name, Attribute name. */
[* value_data_type, String , 1nte§er float ..*/
/* value_format), Fixed or variable (string) *I
/% value_charl First characteristic.
/% value_char2}; Second characteristic. */
4$.,12.19.2 attrlist.attr_name := attr_ name;
4.12.19.3 get attriist. Value_ data _type from terminal;
4.12.19.4 case attrlist.value_data_type value
4,12.19.5 integer:
4,12.19.6 begin
4,12.19.7 attrlist.value_format := null;

O T o e T Y e e e T el sl o]

NNNRN NN RN DN NN
¢ o o

e O ol o o] R T SR = e

WO \OWOWONWW WOOWW OO WOW
(=]

NRNRNR NNt it b~ O Q0

Fol o S Y Ll ol Y SR o O O F SR R O al
VEH W =OWwoo~ OVnP W N

4.12.19.26
4.12.19.27
4.12,19.28
4.12.19.29

4,12,27.1

%

4,12.27.2
ke

4.12,27.3
4.12,27 .4%*
4,12.27.5

and
type-C_attr_names[index] not = attr_name do
4,12,27.6
4.12,27.7 index := index + 1;
4.12,27.8 end while;
4,12.27.9 if type-C_attr_names[index] = attr_name
4,12.27.10 then
4,12.27.11%* found := true;
4$.12,27.12 end if;
4,12.27.13 end_ proc;
4.,12.42.1 proc REVIEW_RECTEMP /* REVRTEMP (DBL1123) */

4$.12.42.7 end_proc;

PAGE 123
get attrlist.value_charl; /* Min value. */
get attrlist.value char2; /* Max value. */
end begin;
string:
begin
/% Fixed or variable length string ? */
get attrlist.value_format from term1na1,
1f attrlxst value_Tormat is fixed
5e in
J* Min length = 0 get max length. */
attrlist,value_c har
get attriist. v_lue char2 from terminal;
end begin 1
else
begin
/¥ Bet min and max lengths. */
get attrlist.value_charl from Lerminal;
etfattrllst .value_char2 from terminal;]
end i
end Beéln; ;
float: ;
otherwise: ;
end case
end proc;
proc SEARCH TYPE-C_ATTR_NAMES /* SRCHCLST (DBL1122) */

(Input: type-T _attr_names,
attr n3me,

output: found
/* Search the list of attr1bute names over which tzpe C *
[* descriptors are to be defined to determine whet
/* attr_name is a du licate, Input is a list of attri */
/* bute names over ich type~C descriptors are to be */
/* defined, and an attribute name. */

scalar index, /* Index into list of attribute names.*/
found; /* Indicator, TRUE or FALSE. */

index := 1;

found := false;

while type-C_attr_names[index] not = null
7* Tull Indicates end of list */

input; rectemppointer);
/[*S TUB */

4.14.29.1

4.14.29.2

4.14.29.3

4.14.29.3

4.14.29.4

4.14.29.5

4.14.31.1

4,14.31.2

4.14,31.3

4.14.31.4

4.14.31.5

PAGE 124

proc DERIVE FROM A OR_B DESCR /* DRVAORB (DBL1131) */

/
/

St——— ~
* % % % % %

input: predicate, atpointer,
output: descr_;d);

Determine whether there exists a tyge A or type B descriptor *
from which the current keyword can be derived. *
Input 1s an equality predicate, and a pointer to the AT. *
A predicate has the form:

predicate = (attribute, "=", value)
A descriptor id is returned to the calling procedure.

* % ¥

L

scalar descr_id,
dditpointer, /* Pointer into DDIT returned from */
/* FIND function of ATM *

descr_type; /* A, B, C, or NOTFOUND. */

descr_id := null;

[* FIND returns a pointer to first descriptor defined for */
/* this attribute name, */

perform ATMSFIND(predicate.sttribute,
dditpointer,
pointer to descr_type);

[* DERIVE returns the descriptor id for any descriptor from */
/* which this keyword can be derived. (May be nullg */

perform DDITMSDERIVE(BEgdicgte,
itpointer
descr_id);

end proc;

roc DERIVE_FROM_C_DESCR /* DRVC (DBL1132) */

I[*

(input: predicate, atpointer,
. output: descp_ld) . L.
Determine whether ke¥word can be derived from an existing ¥
type-C descriptor, If not, define a new type-C descriptor. ¥
In put is an equa11t¥ predicate, and a pointer to the AT. *
A predicate has the form:
predicate = (attribute, "=", value) *
A descriptor id is returned to the calling procedure. *

scalar descr_id, /* Descriptor id returned from DERIVE */
. /* function of DDITM, */
dditpointer, /* Pointer into DDIT returned from */

) /* FIND function of ATM, */

keep_ddit_ptr, /* Save pointer returned fromFIND */

}* to compare with that returned by */
/* INSERT function of DDITM. /
descr_type; /* A, B, C, or NOTFOUND, */

descriptor = (lower_bound, upper_bound);

dditpointer := null;

/* FIND returns pointer to the first descriptor defined for */
/* this attribute name in DDIT. */

perform ATMSFIND(predicate.attribute,
dditpointer
pointer to descr_type);

TN

'
{
¢
P
*
¢
4
L

-—ss SN O TN OB BN W e e

4.14.31.6

— e
P

e o o o
NN NN
WO nipsl

et et et ot et ok ot o
o X 2 o SR S P A F

.

PR o P P SR af 2 R NN P S B

W W Wwww
Pttt ot ot ot et et

.
w
(=]

4.14.36.1

4.14.,36.2
4.14.36.3

PAGE 125

:= NULL;

[* If this is the first tyge—C descriptor defined for this */
/* name, first insert the descriptor into DDIT, then pr-. *
[* an entry in the AT with a pointer to that descriptor. */
/* 1f this is not the first type-C descrigtor defined for */
/* this attribute name, check to see whether this descrip~ */
[* tor already exists, If it does, use the existing id; */
/* otherwise, insert the new descriptor into DDIT. */

descr_id

if no descriptors yet defined for this attribute
then

egin
escriptor.lower_bound = null;
7escr1ptor.upper_bound = predicate.value;
* Get descr 1d Trom somewhere as yet undefined. */
perform DDITMSINSERT(descriptor,
dditpointer,
descr_id);
perform ATM$INSERT§8;ed1cate.attrlbute,

4 besi ddifpointer);
end begin
else /% Descriptors previously defined for this attr.*/

begin
Eseg ddit_ptr := dditpointer;

/* Does this descrigtor already exist? ¥*/
perform DDITMSDERIV (grgdlcgte
ditpointer,
) descr_id);
[* 1f not, add it. */
%é_keywog& is not derivable
This is a new descriptor */
then .
egin .
et descr jd from somewhere as yet undefined. */
perform DDITM%INSERT(degcrlptor,
dditpointer,
descr_id);
if keep_ddit_ptr != dditpointer
then . .
perform ATMSUPDATE(predicate.attribute,
) dditpointer);
end begin
end 1if,;

end begin;
end 1T;

end proc;

proc

PUT_DESCR_ID INTO_LIST /* PUTINLST DBL1133) */
(input™ descr_id, descriptor_ids, descr_count);

Insert a new descriptor id into the list of descriptor ids */
from which the current record can be derived. *
Input is a descriptor id, a list of descriptor ids, and a */
count of the number of items in the list. The list must be*/
a new id to be inserted into the list. The list must be */
maintained in ascending sequence. */

insert descr_id in order into list of descriptor ids

end_proc;

PAGE 126
4.14.41.1 proc BUILD SORT_RECORD /* BLDSRT (DBL1134) */
input: descr_count,
descriptor_ids,
input_record,
rectemppointer);
4.14.41.2 sortrec = (descr_count, descriptor_ids, database_record);
4.14.41.3 sortrec.descr_count := descr_count;
4.14.41.4 sortrec.descriptor_ids := descriptor_ids;
4.14.41.5 format input_record into sortrec.database_record;
4.14.41.6 write sortrec to output file for sort
4.14.41.7 end proc;
4.14.45.1 proc REVIEW_TYPE-C_ATTR_NAMES /* REVTYPEC (DBL1134) */
input: type—C_attr_names,
atpointer);
[* Review the list of attribute names over which type-C */
/* descriptors are to be defined. If no descriptors have yet */
/* been defined for an_ attribute, create an entr¥ in AT with */
[* a null pointer in place of a pointer into DDIT, */
[* Input is a list of the attribute names over which CX%e—C */
/* descriptors are to be defined and a pointer to the AT. */
4.14.45,2 scalar index, [* Index into list of attribute names.*/
dditpointer, /* Pointer from AT into DDIT. */
descr_type; /* A, B, C, or NO"FOUND, */
4.14.45.3 index := 1;
4.14.45.4 while type-C_attrnames[index] not = null do
/* null Indicates end of list *
4.14.45.,5 begin
4.14.45.6 perform ATMSFIND(type-C_attr_rames[index],
ditpointer
. pointer to descr_type);
4.14.45.7 f not found
descr_type = NOTFOUND */
z.}z.zg.g then |
J14.45, begin
4.14.45.10 dditpointer := null; .
4,14.45.11 perform ATM$INSERT§E¥pe—C_pttr_pames[1ndex],
) ddifpointer);
4,14,45 12 end if;
4.14.45.13 end while;
4.14.45,14 *end_proc;
9.10.2.1 proc car_mnon_mcxmn_imm /* GETRAND (DBL141l1l) */
input: number of backends,
output: random_index_to_backends);
/* Randomly select 8 backend at which to begin distributing */
[* data from the curremt cluster. Input is a pointer to an */
/* argument list which contains the number of backends in */
/* the system. OQutput is a random number generated within */
/* the range of 1 to number of backends. */
9.10.2.2 scalar random_index_to_backends;

SRR Y U 2

l PAGE 127 |
9.10.2.3 generate random_index_to_backends
within the range T to number_of_ backends;
9.10.2.4 end proc;
B
9.10.6.1 proc DISTRIBYTE_RECORDS /* DISTREC (DBL1412) */
*% input/output: record,)
ok] next_backend_index,
ok input: system_info
*% ciusteg qumSer, .
*k output: capabiTity remaining); ,
l /* Physically distribute the data over the multiple backends */ |
;: according to the track-splitting-with-random-placement :;
strategy.
b /* Input §§ the first record of a cluster, a randomly gener- */
* /* ated index into the list of backend addresses, some system */
x / information, includinguthe list of backend addresses, and */
k / the cluster number. tput is the cagab111ty remaining in */
** [* the track at which records added to this cluster are to be */
% / stored. This capacitg, together with the index and the */
k [cluster number, will be used to update the CINBT. Note */
x [also that records are read at _this level, so that when the */
% [ggocedure terminates, the variable record will contain the */
ok /* first record of the next cluster, */
[* Records have the form:]) */
/* record=(descr_count, descriptor_ids, database_record). */
[* System_info has the form: */
/* Ssystem_info=(number_of backends, */
[* backend_addresses */
[* track_capacity; . */
/* Cluster number is a character string. */
9.10.6.2 scalar capacity_remaining, /* Capacity remaining on the */
[* track oI the backend at */
/* which the next record of */
/* this cluster is to be */
/* stored. *
next_backend_index,/* Index to backend addresses*/
prev_descr_count, * Count of descriptor_ids */
/* from the previous record. */
new_cluster; /* TRUE or FALSE. */
9.10.6.3 record = (descr_count, /* Number of descriptor_ids */
]] [* in the list fqllowlgg. */
descriptor_ids, [* List of descriptor ids */
/* from which this record may¥*/
* be derived. *
database record); /* Record in format required */
/* for storage. */
9.10.6.4 array prev_descr_ ids; [* Descriptor ids from the */
/* previous record. */
9.10.6.5 array full_track; /* Array in which to accumulate*/
/* a full track of records. */
9.10.6.6%* capacity remaining := system_info.track_capacity;
9.10.6.7 while more records in cluster do
9.10.6.8 begin
/* Accumulate a full track of data before distributing */
/* data to the next backend. When a track is distributed*/
/* increment the next_backend_index to point to the next */
/* backend address and reset The capacity_remaining. *

o »
.
.
(=]

.« o
. o
4 e o
(INT

P =3

e e e) ol o el
O © O OO0 oo

Pttt et bt s i\

ooN O O OONON OO

OO O O WYWOW v
.

.
~NON

9.10.6.18

9.10.6.19
9.10.6.20

9.10.6.23
9.10.6.24

9.10.6.25

.6.26
6.27
.6.28

WA\ON\O
" e

10
i0
10
9.10.6.29

9.10.6.30

if capacity_remaining >= gize(record)
then

besin
add record to full track array;
capacity_remaining :=

d capacity_remaining - size(record);
en

else

begin
istribute cluster_number, full_track to
backend at .
system_xnfo.backer_gddress .
next_backend_index];

next_backend_index =
(next_backend_index + 1)
mod (number_of_backends;

capacity_remaining :=)
. system_info.track_capacity;
end if;

[* Save descriptor count and list of descrigtor ids from :/
e next to

[* the current record for comparison with t
/* detect cluster change.

prev_descr_count := record.descr_count;
prev_descr_ids := record.descr_ids;

/* Read the next record */

read a record from file of sorted records;

perform CHECK_FOR_NEW_CLUSTER
(record,
prev_descr_count,
prev_descr_ids,
new_clusteT);

end while;

if full_track array is not empty

then
distribute cluster_number, full track to backend
at system_lnfo.bacﬁen?_aﬁdress .
next_backend_index];
end if;
end proc;

PRI

Fifth

9.10.6.25.1 proc CHECK_FOR_NEW_CLUSTER

*k
/*
*
/e
/*
/%
/*
/*
/*
9.10.6.25.2
*%k
9.10.6.25.3
9.10.6.25.4
9.10.6.25.5
9.10.6.25.6%*
9.10.6.25.7
9.10.6.25.8
9.10.6.25.9
2.10.,6.25.10%*
9.10.6.25.11
9.10.6.25.12
9.10.6.25.13
9.10.6.25.14
9.10.6.25.15%*
9.10.6.25.16
9.10.6.25.17
9.10.6.25.18
9.10.6.25.19

Level Specification for Database Load

/* NEWCLUST (DBL14121) */
input® record,

prev_descr_count,

prev_descr_ids,
output: new_cluster);

Check the list of descriptor_ids from the current */
record against the prev_descr_ids list from the */
previous record. If the lists are different lengths */
a new cluster is indicated, If the lists are the *
same length, compare them item by item to determine */
whether a new cluster is indicated. */
Records have the form: .] */
record=(descr_count, descriptor_ids, database_record)*/

scalar index /* Index to both lists of ids. */
new_cluster; /* Indicator, TRUE or false. */

new_cluster := false;
if "record.descr_count not =
- prev_descr_count
then
new_cluster := true;

begin

1n§ex := 1 /* Set index. */
new_cluster := false;,

whiTe index <= recoré.descr_;ount do

begin

if record.descriptor_ids[index] not =
o prev_descr_ids[index]
e

(o
=4

new_cluster := true;
else .
index := index + 1;

end while;

end if

9.10.6.25.20 endproc;

PAGE 129

PAGE 130

C.2 Part 1I - Record Template Module

[* 1) Part II - Record Template Module */
/* 2) Design: Record Template Module */
[* 3) Designer: P. R. Strawser */
1* 4) Date: August 25, 1981 */
1% 5) Modified: */
[* *
[* (6) Purpose: i */
[* The record template module provides ser- */
/* vices for record template data structures.*/
[* A record template data structure is_a *
[* tabular collection of information about the*/
[* records of one file, where all records are

[* assumed to have the same format. Each */
1* template is identified by record type, and */
[* contains a _count of entrles and an entry */
/* for each field in the record. Each entry */
[* contains field name, data type, length in- */
[* formation, and an indication of whether the*/
;: field might be a descriptor. :;
[* (7) Output Data:) i */
[* A record template for a given file. */

(8) Procedure Structure for RTEMPM
RTEMPM
(Module)
RTEMPM$ RTEMPM$ RTEMPM$ RTEMPM$

CREATE DUPCHECK GETENTRY INSERT

. i o

(10) Program Specifications

module RTEMPM
programs CREATE, DUPCHECK, GETENTRY, INSERT;

data structures record template;

end module

proc RTEMPM CREATE(input: record_type,
output: rectemppointer);

[* Name a record template structure with the name record_type */
/* and initialize count of entries to zero. */
/* A record template has the structure: . */
/* record_template = {count, entry[no_entries]); */
/* An entry in the record template has the structure: */
/* entry = (attr_name, data_type, format, lenl, len2, */
/* descr_ind); */

scalar rectemppointer; /* Pointer to record template structure, */

Allccate a record template data structure with the name
record_type;

rectemppointer := pointer to allocated data structure;
rectemppointer.count := 0;
end proc;

roc RTEMPM_DUPCHECK(input: rectemppointer,
attr_name,
output: dupTlicate);

/* Check to see whether there is alread{ an entry in this record
/* template with an attribute name equal to the input attribute
/* name. Input is a pointer to the record template and an attri-
/* bute name., Output is an indicator with a true or false value.
[* A record template has the structure: .
{* record_template = (count, entry[no_entries]);
/* An entry in the record template has the structure:
5: entry = (agtr_pame&)data_;ype, format, lenl, len2,

escr_ind);

scalar duplicate, /* Indicator with TRUE or FALSE value. */
counter; /* Local variable. */

counter := 1;
duplicate := false;

while counter is less than or equal to rectemppointer.count
) & duplicate is false do;
if attr_name =_rectemppointer.entry[counter].attr_pame
then duplicate := true;
end while;

end proc;

*/
4

*/
*

PAGE 131

LI Wi SN TR N

e

i

1

hd,

3 roc

RTEMPM_GETENTRY(input: rectemppointer,

field number,
output: rectemp_entry);

PAGE 132

[* Get the entry indicated by field_number from the record template */
/* pointed to by rectemppointer, and return the information to the */
/* calling procedure. */
/* A record temflate hgs the structyre: . */
[* record_template = (count, entrylno_entries]); */
[* An entry jn the record template has the structure: */
[* entry = (attr_name, data_type, format, lenl, len2, */
/* descr_ind); */
{ /* A record temp%ate entry. %/
l rectemp_entry = (attr_name, value_data_type, value_format,
vaTue_charl, value_char2, descr_ind);
if field_number greater than rectemppointer.count
then
rectemp_entry := null;
else .
rectemp_entry := rectemppointer.entry[field_number];
end if;
end proc;
proc RTEMPM_INSERT(input: rectemppointer,
rectemp_entry,
output: successfulg;
[* Insert an entry in the next available slot of the record template */
/* pointed to by_rectemgpointer. Output is an indicator indicating */
/* success or failure of the operation. */
/* A record temglate has the structyre: . */
/* record_template = (count, entryTno_gntrxes]); */ ;
[* An entry in the record template has the structure: */
[* entry = (attr_name, data_type, format, lenl, len2, */
/* deser_ind); */
scalar successful; /* Indicator with TRUE or FALSE value. */
successful := true;
rectemppointer.count := rectemppointer.count + 1;
if rectemppointer.count > maximum fields per record
then
successful := false;
else)]
4 ggctemppoxnter.entry[rectempp01nter.count] = rectemp_entry;
end if;

end proc;

- e e AR -

PAGE 133

APPENDIX D
THE SSL SPECIFICATION FOR DIRECTORY MANAGEMENT

The system specification for directory management is given in this ap~
pendix. The specification consists of five parts: the top level of directo-

ry management, one service abstraction, and three data abstractionms.

In Part I, the top level of directory management is specified, In Part
1I, the service abstraction employed in directory management is specified.
This abstraction, known as directory interface, accepts the output of des~
criptor search and produces the input for cluster search, The data abstrac-~
tions for attribute table, descriptor—-to-descriptor-id table, and

cluster-definition table are specified in Parts III, IV, and V, respectively.

D.1 Part I - The Top Level of Directory Management

/* (1) Part I : The Top Level of Directory Management */
[* 2) Design : DIRECTORY_MAN . */
/% 3) Designers : T.M. Ozsu, A. Orooji */
[* (&) Date : July 28, 1981 */
[* 5) Modified : Aug. 4, 1981 */
[* Sept. 11, 1981 */
[* (6) Purpose : _) . x/f
/* This is the directory management subsystem. The inputs are a */

[* pointer to a table which contains either the keywords in a record or */
[* the predicates in a query, either the number of .keywords in the */
/* record or the number of predicates in the query, "and a schedule */
/* number that is used in determining the range of keywords or */
; 8 . 8 yword 0
[* predicates this backend is supposed to process. The output is either */
/* a cluster id (request type=insert) or a set of addresses (request ¥*/
/* type=non-insert). */

PAGE 134

(8) Procedure Hierarchy for DIRECTORY_ MAN
DIRECTORY MAN

+
+
<4
<
+

DIRECTORY_MANS DIRECTORY MAN$ DIRECTORY MANS DIRECTORY_MAN
INS_DETC_SR Nlus_stc_sn INS_CLUS_CR NINS_ADDE_GR
+ +

+ —

DIRINTS DIRINTS DIRINTS DIRINTS CDTM$
CREATE DEFPRED BROADCAST GET_ALL_DESC FIND_ SINGLE_CLUS

+ + + +

DIRINTS DIRINTS CDTM$
NO DESC_GR NEXT DESC_GR FIND_ADDRESS

(9) Data Structures

/* The data structure definitions are included in the program */
/* specificatioms. */

(10) Program Specifications

fu—y
.

subsystem DIRECTORY MAN(input: inptr, number, schedule_no,
output:{cluster_id, addresses});

2. set addresses;
3. Find the Attribute Table of the current database, call it AT;
4, if request type is INSERT
5. then ES§l2 /* in tr-rec?gdptr; number=no. of keywords */
6. perform INS_DESC_SR(inptr, number, schedule no, AT);
] o_the descriptor search for the keywords in the record */
7. erform INS_CLUS GR(inptr, cluster_id);
7> f1nd the cTyster the record belongs to */
g. return(cluster id);
. end begin
10. else 5e§1n . .
non-insert; inp{r=queryptr; number=no. of predgcates */
11. ger?orm NINS_DEéC_g inptr, numﬁer, schedule_no, AT); .
[g the descriptor search phase for the predicates in :;
the quer
12. ger§orm_ul§s Abor GR(inptr, addresses); | ,
ind the addresses of the records in clusters which */
/* may satisfy the query */
13. _return(addresses%;

14, end i
15. end subsystem;

6.1 proc INS_DESC_SR(input : record_ptr, no_keywords, schedule no, AT);
5* This procedure handles the insert cases. Given a record, the number

*/
/* of keywords in the record, the schedule number and the Attribute */
[* Table, it comgutes the range of keywords it is supposed to handle */
/* and works on the keywords in that range. */

6.2 type := “insert”;

"

-~.—-—

PAGE 135

3 calculate the range of keywords to work on;
g conjunc_no := 1; .
keyWord no := séartxn% keyword number;
6 erform DIRINTSCREATE(request_id); /* create a new RDIT table */
g while there are keywords in range do
9

egin
Io?'patameger := (conjunc_no) || (keyword_no)};
location parameter consists of conjunction number */

/* concatenated with keyword number within that . */

/* conjunction. In insert cases, cunjunction number is 1 */

6.10 ick next keyword; i
6.11 orm an e?ua 1tB gredlcate; .
6.12 erform DIRINTSDEFPRED(type, loc_parameter,predicate,AT);
7% Find the descriptors that satisfy the predicate */
6.13 keyword_no := keyword_no + 1;
6.14 end while
6.15 Eer;orm DIRINTSBROADCAST;)
roadcast the descriptor ids to all the other backends */
6.16 end proc;

11.1 proc NINS_DESC_SR(input : query_ptr, no_predicates, schedule_no, AT);
5* Th handl

is procedure es non-lnsert cases. Given the query, the */
/* total number of predicates in the query, the schedule number and */
[* the AT, it computes the range of predicates 1t is supposed to */
[* handle and works on the predicates in that range. We recall that */
/* each backend handles 17n of the predicates, where n is number of */
/* backends. */

11.2 type := “non—~insert”; .
11.3 compute the range of predicates to be worked on;
11.4 conjunct_no := first conjunction number in the range;
11.5 predicate_no := starting predicate number in the raﬁge’
11.6 erform DIRINTSCREATE(request_id); /* create a new RDIT table */
11,7 while there are conjunctions 1in the range do
11,8 egin
11.9 Hick next conjunction; .
11.10 do begin /* do for each predicate *{ .
11.11 Iocrparameter ;= conﬁunc;_no) | (predicate no);
11.12 erform DIRINTSDEFPRED(type, loc_parameter,predicate,AT);
11.13 'Y edicate_no := predicate_no + 1; .
11.14 until(end of predxcazes in this gongunchon) or
) end of predicates in the range);

11.15 conjunct_no := conjunct_no + l;
11.16 end while;
11.17 E;;‘Der orm DIRINT$BROADCAST _

roadcast the descriptor ids to all the other backends */
11,18 end proc;

7.1 proc INS_CLUS_GR{input : recordptr, output : cluster_id);
/¥ This procedure finds the ¢ usier to which the record _being */
/* inserted belongs. If the descriptors of the record define a */
* new cluster, it signals this to the controller. */

7.2 list descriptor_id_group; /* used internally for keeping */
/* descriptor-id group */

3 wait until RDIT tables are obtained from all backends;
4 join all these RDIT tables jnto one RDIT table;
5 erform DIRINTSGET_ALL DESQ?descrxptor_1d_group ; . .
5* Get the descrngbr-ld %roup for the record being inserted */
6 erform CDTMSFIND SINGLE CLUS(descriptor id_group, cluster_id);
; /¥ ¥Find the cluster that the record Being inserted belongs to */

return{cluster_id); . o .
5* If cluster is found, its id is returned. Otherwise a null */
/* value is returned. */

7.8 end proc;

PAGE 136 |

12.1 proc NINS_ADDR GR(input : queryptr, output : address_list);
/* This procedure finds the addresses of the records in this */ '
/* backend that may satisfy the query. */

scalar comjunct_no, no_group, index : integer;
115t addresses;

(18t descriptor_id_group;

[1st cluster_nos;

.

wait until RDIT tables are obtained from all backends;
join all these RDIT tables into one RDIT table; 1

el el st ol et et et e

RPN DN
.

=000~ P WN

. conjunct_no := 1l; . .
. while there are conjunctions in the query do
. ? egin

ge;form DIRINTSNO DESC _GR(conjunct_no, no_group);

ind the number of descriptor—id groUps for this */
/* conjunction. */

12.12 for index from 1 to no_group by 1 do
12.13 begin .]
12.14 perform DIRINTSNEXT DESC_GR(conjunct_no,
descriptor_id_group);
/* Get the next descrigzor-ld,group, */]
12.15 perform CDTM$FIND_ ADDRESS(descriptor_id_group,

. addresses);
/* Find the addresses of the records. */
12.16 address_list = address_list + addresses;)
[* Add the addresses found to the address list; */
* caution: duplicates are eliminated. */

12.17 end for;

}%.ig g h_lcon_]unct__no := conjunct_no + 1;
. end while;

12.20 returniaﬁ&resg_list);

12.21 end proc;

D.2 Part II - The Service Abstraction (DIRINT)

[* 1) Part II : The Service Abstraction */
[* 2} Design : DIRINT . */
[* 3) Designers : T.M. Ozsu, A. Orooji */
[* 4) Date : Aug. 4, 19 */
/* 5) Modified : Sept. 11, 1981 */
[* 6) Purpose :)] o */
[* This is_the service abstraction employed in directory */
/* management. This abstraction, known as 1rector5 interface, */
/* accepts the output of descriptor search and produces the */
* input for cluster search. */
(8) Procedure Hierarchy for DIRINT
DIRINT
R *
DIRINTS DIRINTS DIRINTS DIRINTS DIRINTS DIRINTS

CREATE DETPRED BROADCAST GET_ALL DESC NO_DESC_GR NEXT _DESC_GR

+ — + ———

ATMS DDITMS DDITM$ DDITM$
FIND CDERIVE DERIVE INSERT

ree s A

N ————

— am NS R TN 1"‘

(9) Data Structures

[* The data structure definitions are included in the program */
[* specifications, */

(10) Program Specification

mod DIRINT
rograms DEFPRED, GET_ALL_ DESC, NO_DESC GR, NEXT DESC_GR, BROADCAST
8atasets request_descriptor_id_tabTe RDIT) . .
A table of (loc_parameter,descriptor id) pairs for */
/* the present request */
end mod

6.12.1 proc DEFPRED(input : type, loc_parameter, predicate, AT);
/* This procedure fings’all ?ﬁe descriétors that Eatisfy */
/* a predicate. */

6.12.2 list desc_ids; /* list of descriptor ids satisfying */
* the predicate */

6.12.3 erform ATMSFIND(AT, attribute, dditptr,descriptor_type);
— J* Find the pointer to DDIT entry for the ggven a{tribute */
6.12.4 if search successful
6.12.5 then begin)
6.12.6 1f (type = “insert”) and (descriptor_type = “C”)
6.12.7 then begin . . .
6.12.8 erform DDITMSCDERIVE(predicate,dditptr,desc_ids);
6.12.9 1f keyword not derivable
6.12.10 then beﬁln [* a new type-C descriptor */
6.12.11 new_desc_1d := a new descriptor id; |
[*¥Give this descriptor a new id ¥/
/* and insert it into DDIT */
6.12.12 perform DDITMSINSERT(descriptor, .
. new_desc_id, dditptr2);
/* insert the néw descriptor 1nto BDIT */
6.12.13 value(RDIT, loc_parameter) := new_desc_id;
6.12.14 4b /* Insert the new descriptor id into RDIT */
.12. end begin
6.12.15 else .
6.12.16 value(RDIT, loc_parameter) := desc_ids;
2.%%.{% end if
.12, end begi
6.12.19 else begin
6.12.20 perform DDITM$DERIVE(predicate, dditptr,desc_ids);
ind those descriptors from which this ¥
/* predicate is derivable and put their ids *
/* into the desc_ids list */
6.12,21 value(RDIT, loc_parameter) := desc_ids;)
* add a new pair for each descriptor id in */
. [* desc_ids list */
6.12.22) end 1f
6.12.23 end if
6.12.24 end proc;
7.5.1 proc GET_ALL DESC(putput : descriptor_id_group);
7* This procedure gets the dgscriﬁfor—éds e] the descriptors */
/* from which the keywords in a record have been found to be */
/* derivable. */

7.5.2 descriptor_id_group := null;
1.5.3 do 7* colTect all descriptor ids */
7.5.4 descriptor_id_group := deschptor_id_groug +
) descriptor id at current location of RDIT;
7.5.3 untxl(snd of RDIT table);
7.5.6 Teturn(descriptor_id_group);
7.5.7 end proc;

PAGE 137

12.11.1 proc NO DESC_GR(input : conjunct_no, output : no_group);

I* This procedure finds the number of descriptor-id groups for
[* the given conjunction. Furthermore, it initializes certain
/* arrays and counters that will be used by NEXT DESC_GR
array counter, desc_per_pred : integer; /* global arrays */
scalar pred_no, index : integer;
find the befinning of predicates for conjunct_no in RDIT;
pred_no := [;
no_group := i;
;“ gx = 5/* initiali d d */
O begin 1nitjalize desc_per pred arra
- éesc_per_yred%index) 1= Ug P y

indeXx := 1index + 1;
unt1l(end of desc_{er_pred arra¥); .
do begin /* Calculate number of descriptors for all */

/* predicates in the given conjunction. */
loc_param := conjunct_no l? pred_no; .
do T /* calculate no, of descriptors for one predicate */
glck next RDIE entry;
] gsc_per_pred pred_no) := desc_per_pred(g ed_no) + 1;
until(loc_param ~= location parameter in RDI § or
end of RDIT);

[— [l e VY Sy a— Pt o ot Pt st ot ot et et [ya—
j— Pt et ot i et Pt Pt it ot st ot o b ot pu—ye—
e b b b OO~ NS WA

0 ~NOnEpW O

Pttt ot et ot ot ot ot et o et ot et st ot s
R PRNPRNN DRPONDRODNNNN DR

. .

et Pt e Pt it [l [y =Y S

bt bt ot et St Pt ik ot ot ot
.

Pt ot ot ot ot ot kot ot ot
RN RN DN

keep a running total of number of *
/* descriptor-id groups
pred_no := pred_no + 1;

no_gr?gp := no_group * desc er_pred(pred_p?);
*/

until(end ofd ogjunctlon);)
Hesc_ygrﬁpre 0) := pred_no - 1;

) e
index := 1;

ep the total no. of predicates in conjunction */

do begin /: set counter array to 1l; to be used :%

/* ip NEXT DESC_GR
counter(index) :=T;
index := index + 1;

until(end of counter array);

I

eturn(no_group);

end proc;

12.14.1 proc NEXT DESC_GR(input : conjunc_no,

/

output : descriptor_id_group);
* This ggocedure generates the next descriptor-id group that */
* satis
* conjunc_no.

12.14.2 array desc_per pred, counter : integer; /* global arrays */
12.14.3 scalar index, eff_index : integer;
12.14.4 find the beginning of predicates for conjunc_no in RDIT;
12.14,5 ff index := beginning position; . .
7* The for loop finds the next &escrlptor-xd group */
12.14.6 descriptor_id_group := null;)
12.14,7 for index Irom 1 to no. of predicates by 1 do
12.14.8 begin
12.14.9 descriptor_id_group := descriptor_id_group + .
. descriptor 1d at RDIT(eff_index+counter(index));
12.14.10 eff_index := eff_index + desc_per_pred(index);
12.14,11 end for; . .
/*"In the remainder, the counter array is updated for the */
/* next invocation */
12.14,12 index := no. of predicates;
12.14.13 coynter(index) := counter(index) + 1; .
* indicate that the next descriptor id for the last */
[* predicate will be picked up next time */
12.14.14 while counter(index) > desc_per_pred(index) do
* If the last descriptor id for that predicate is */
/* already picked up, indicate that the next ¥/
/* descriptor id for the predicate immediately prior */
/* to this one will be picked up next time, together */
——————,

ies the predicates in the conjunction identified by :;

PAGE 138

———

e — -

o ' ““'-""--'-.--'lI.l.l.-lI----u--—-—---r—f

PAGE 139

/* with the first descriptor id of this predicate.
This is done b{ setting the counter entry */
o

*
l [* corresponding present predicate to 1 "and ¥
/* incrementing the counter entry corresponding to the */
/* immediately previous one. Keep doing this until no */
/* more adjustments are necessary. */
12.14.15 begin
12.14.16 counter(index) :=
/* next time tﬁe first descriptor id for this */
/* predicate wll; be picked up
12.14.17 index := index -~ l; /* look at the previous predxcate */
' 12.14.18 1f index = /* if all the descriptor-id groups have *
/* been picked */
12.14.19 then exit /* leave the loop */
12.14.20 else counter(index) := counter(index) + 1;
/* else increment count for the previous */
[* predicate */
13:14:5 g uhi N
.14, end while
12.14,23 return(descriptor_id_group);
t 12.14.24 end proc;
{
' 6.15.1 proc BROADCAST;
/* This Erocedure broadcasts the RDIT to all the other backends */
6.15.2 broadcast RDIT
6.15.3 end proc;

6.6.1 proc CREATE(input: request_id);
% This procedure creates an occurrence of RDIT table for the */
/* given request. */

6.6.2 end proc;

D.3 Part III - The Data Abstraction for Attribute Table

[* (1 Part III : The Data Abstraction for Attribute Table */
/% 2 Design : ATM */
[* 3 Deslgners : T.M. Ozsu A. Orooji */
[* 4 Date : July 28 198 */
[* 5) Modified : Aug. 98 */
/* Sept. 11, 1981 */
/* (6) Pyrpose : */
[* This is the data abstraction for attribute table. Operations */

/* on attribute table are dome via the procedures in this abstraction. */

(8) Procedure Hierarchy for ATM
ATM

et R S +

ATMS$ ATMS ATMS ATMS
FIND INSERT DELETE CREATE

(9) Data Structures

[* The data structure definitions are included in the program */
/* specifications. */

PAGE 140

(10) Program Specifications

od ATM;
0 8 FIND, INSERT, DELETE, CREATE

3
Eat sets AT /* attribute table */
end mog;

6.12.3.1 proc FIND(input : AT, attribute, output : dditptr,type);
his procedure fipds the location of the attribute ig AT. %/
/* It returns the pointer to the DDIT for that attribute */
/* and the type of descriptors specified on the attribute. ¥/

6.12.3.2 find the matching attribute; |

6.12.3.3 dditptr := pointer at that position; .
6.12.3.4 type := type of descriptors defined on that attribute;
6.12.3.5 return(dditptr, types;

6.12.3.6 end proc;

s 1. proc INSERT(imput : AT, attribute, dditptr);.)
This procedure inserts an (attribute, pointer) pair into AT. */
2. search for the position where attribute fits;
. insert new (attribute, dditptr) pair;

3
4, end proc;

e i wmiom

. 1. proc DELETE(input : AT, attribute);

: /% This ptocegqre deletes an (attribute, pointer) pair from AT. */
! 2. find the matching attribute;

: 3. delete the entry at that position;

i 4. end proc;

|

! 1

. proc CREATE; . .
is procedure creates a new instance of the attribute table */
/* and returns a pointer to it. */

2. create a new instance of the attribute table;

3. insert the database name together with the pointer to the
new AT into the index table for AT s;

4. end proc;

1. proc UPDATE(ingut : AT, attribute, dditptr);
[* This procedure updates the dditptr of the given attribute to */
[* the new dditptr given as input. */
2. find the attribute in AT; .
2. replace the dditptr for the attribute with the new one;

end proc;

!
D.4 Part 1V - The Data Abstraction for Descriptor-to-Descriptor—-1d Table

. [* 1) Part IV : The Data Abstraction for DDIT */

| [* (2) Design : DDITM . */
[* 3) Designers : T.M. Ozsu, A. Orooji */
[* (&) Date. : July 28, 1981 */
/* 5) Modified : Aug. 4, 1981 */)
/% Sept. 11, 1981 */
[* (6) Purpose : j) */
/* This is the data abstraction for DDIT. Operations on DDIT are */

/* done via procedures in this abstraction. */

M e —

PAGE 14)

(8) Procedure Hierarchy for DDITM

DDITM
oo S et I ————————— pmmm e +
DDITM$ DDITM$ DDITM$ DDITMS DDITMS
CDERIVE DERIVE INSERT DUPCHECK CREATE

(9) Data Structures

/* The data structure definitions are included in the program */
/* specifications. */

mod DDITM

(10) Program Specifications

rograms DERIVE, CDERIVE, INSERT, DUPCHECK, CREATE

%;JL__

tasets DDIT

end mod,;

6.12.20.1 proc DERIVE(input : predicate, dditptr, output : desc_ids);
[* This procedure ginds out’ the ids of aIE the descriptérs

/* Descriptor-to-descriptor-id table */

*/
[* from which the predicate can be derived and returns these */
/* ids in desc_ids. This routine is used for all the cases */
/* except when the request is insert and attribute of the */
/* keyword 1is used in type-C descriptors. */
6.12.20.2 desc_ids := null;
6.12.20.3 do begin . .
6.12.20.4 if predicate derivable from descriptor at DDIT(dditptr)
6.12.20.5 then
6.12.20.6 desc_ids := desc_ids +
] descTiptor id at DDIT(dditptr);
6.12.20.7 end if;
6.12.20.8 itptr:= next entry position in DDIT; .
6.12.20.9 untal Edescr;ptors on the same attribute as predicate”s finishes)
6.12.20.10 Treturn(desc_ids);
6.12.20.11 end proc;
6.12.8.1 proc CDERIVE(input : predicate, dditptr, output : desc_id);
/* This ptocegure fgnde out the id of the ﬁescriptor_ from */
[* which the predicate can be derived and returns this id. */
/* This routine is used only when the request is insert */
[* and attribute of the keyword 1is used in type-C */
/* descriptors. */
6.12,8.2 do begin . ‘
6.12.8.3 Li predicate derivable from descriptor at DDIT(dditptr)
6.12.8.4 then begin .
6.12.8.5 desc_id := descriptor id at DDIT(dditptr);
6.12.8.6 . return;
6.12.8.7 end if .
6.12.8.8 dditptr := next entry position in DDIT;) .
6.12.8.9 until (descriptors on the same attribute as predicates’s finishes)
6.12.8.10 return(“not derivable”);
6.12.8.11 end proc;
motemiiligioks

PAGE 142

1. proc DUPCHECK(imput : descriptor, dditptr, output : answer);
Given a descriptor, thgs rocedure checks to make sure that */
* its range does not overlap the ranges of other already */
/* defined descriptors in DDIT, */

2. answer := “no”;
3. do begin .
4, Li descriptor range overlaps the range of that
. pointed at by dditptr

. then begin .
6. answer := “yes”;
7. . return;
8. end if; . . .
9,) t ptr := pext descriptor in DDIT defined og the same attribute;
10. until (no more descriptors on the same attribute);
11. end proc;
6.12.12.1 proc INSERT(input : descriptor, desc_id, output : dditptr);

[* This procedure inserts a descriptor and its id into DDIT. */
6.12.12.2 find the place for the descriptor;
6.12.12.3 insert the descriptor;
6.12.12.4 end proc;

1 roc CREATE;
/* This procedure creates a new instance of the descriptor—-to- */
/* descriptor-id table. */
2. create a new instance of DDIT; . .
3. insert the database name together with the pointer to the
new DDIT into the index table for DDIT s;

4. end proc

— e e e R R e e e e e e s

[* 1) Part V : The Data Abstraction for CDT */
[* 2) Design : CDTM . */
[* 3) Designers : T.M. Ozsu, A. Orooji, Z. Shi */
/* (4) Date : July 31, lesl */
/* 5) Modified : Aug. 7, 1981 */
/% Sept. 11, 1981 */
/* (6) Purpose : . . */
/% This is the data abstraction for cluster—definition table. */
[* Ogeratxons on CDT are done via the procedures in this */
/* abstraction. */

(8) Procedure Hierarchy for CDIM
CDTM

& " 3

CDTMS$ CDTMS$ CDTM$ CDTMS$
FINQ_SINTLE_CLUS FIND_ADDRESS INSERT_NEW_CLUSTER CREATE

+ + +

CDTM$
MINCLUS

PAGE 143

(9) Data Structures

[* The data structure definitions are included in the program */
/* specifications. */

(10) Program Specifications

od CDTM ;

programs FIND SINGLE CLUS, FIND ADDRESS
TNSERT_NEW_CLUSTER;” CREATE}

datasets ECDT, descriptor table (DT),
descriptor-to-cluster map (DTCM)

end mod;

~

.6.1 proc FIND_SINGLE_CLUS(input : desc_id_group, output : cluster_id);
J* This procedure finds the cluster whose’descrlptor—id set */ ’
/* matches desc_id_group *

8

ca
[
[

stop : boolean;

|

lar s
lar index : integer;
[ar mindesc : character;

]
)

cluster_id := null;
erform MINCLUS(desc_id_group, mindesc);
Among the descriptor ids in desc_id _group, fiud the */
[* id whose descriptor participates in defining the */
/* smallest number of clusters *

N NN
.

ooy oooNOh
.

[Y, T S W) N
w
)

7.6.7 do begin /[* this loop looks at each cluster whose */
_ /* descriptor-id set contains mindesc */
7.6.8 pick next entry in DTCM for this descriptor;
7.6.9 pick the entry in ECDT pointed at by cdtptr in
) the current DICM entry; . .
7.6.10 if ECDT(cdtptr).no_desc = no. of descriptors in desc_id_group
7.6.11 then begin /¥ the descriptor-id set for this cTuster */
* may match since it has the same number */
. {* of descriptors *
7.6.12 irdex := 1;
7.6.13 stop := “false”;) L
7.6.14 do /[* look at each descriptor id in */
/* descriptor-id set . %
7.6.15 if descriptor id currently pointed at by descptr ~=
. . d sc_xd_group(xndexl
1.6.16 +hen stop := “true 7? no match; stop .
7.6.17 .18€ begin /* match, pick next descriptor id */
* in each list */
7.6.18 index := index + 1;
7.6.19 update descptr to point to
next descriptor id;
;.g.%g 1(end if) 0 d g) ()
6. until(end of degcriptors in desc_id_group) ox (stop);
7.6.22 if not stop 7* sge if there was Egmatgh *% P
7.6.23 then begin /* there was a match *
7.6.24 cluster_id := cluster id at ECDT(cdtptr);
7.6.25 return;
7.6.26 . end 1
71.6.27 end if . -
7.6.28 until (no more entries in DTCM for this descriptor);
7.6.29 end proc;

12.15.1 proc FIND ADDRESS(input : desc_id_group, output : addresses);
I* This procedure Tinds the a dresses of the records “in */
/* clusters whose descriptor-id set contain desc_id_group */

12.15.2 scalar index : integer;
12.15.3 scalar stop :boolean;

12.15.4 addresses := qnull;

PAGE 144

Among the descriptor ids in desc_id_group, find the */
id whose descriptor participates in defining the :/

12.12.5 pertorm MINCLUS(desc_id_group, mindesc);
/%
/* smallest number of clusters.

12.15.6 do begin /* do for all the clusters whose descriptor-id */
] /*set contain mindesc i */
12.15.7 pick next entry in DICM for this desctxgtor;)
12.15.8 pick next entry in ECDT pointed at by cdtptr in
] the current DTCM entry; . . ‘
12.15.9 if ECDT(cdtptr).no_desc >= no, of dgscrxgtors in desc_id_group
12.15.10 then begin /¥ the descriptor-id set for this cluster */
) /* may contain desc_id_group */
12.15.11 index := 1;
12.15.12 stop := “false”; . L
12.15.13 do 7* look at each descriptor id in the */
* descriptor-id set for this cluster */
12.15.14 if descriptor id currently pointed at by descptr >
desc_id_group(index)
12.15.15 then stos i= “true”; .
[* escristor-ld set does not contain */
[* desc_id_group(index *
12,15.16 else if descriptor id pointed at ?y descptr =
12.15.17 hen besi desc_id_group 1ndex§
.10, then begin
5* match; look at next id in */
/* both lists */
12.15.18 index := index + 1;
12.15.19 update descptr to point to next
12.15.20 ib descrptor id;
.15. end begin
12.15.21 else update descptr to poimt to next
descriptor id;
[* keep looking in the */
/* descriptor-id set */
[* for the cluster */
12.15.22 _ end if
12.15.23 end i .))
12.15.24 until(end of descriptors in 9esq_zdf3t up)
or (descptr = null) or (s Opg;
12.15.25 if (index > no. of desc. in desc_id_grou
12.15.26 then /* the search was successful; */

* add addresses of the records */
* in this cluster to the list of */
/* those which qualify */
12.15.27 addresses := addresses + .
addresses pointed at by addrptr in
ECDT(cdtptr);

12.15.28 end if

12.15.29] end if . .
12.15.30 until(no more entries in DTCM for this descriptor);
12.15.31 end proc;

1. proc MINCLUS(input : desc_id_group, output : mindesc);
Among the descriptor ids in desq_iﬁ_group, _this procedure */
[* finds the id whose descriptor participates in defining the
/* smallest number of clusters.,

2, scalar min : integer;
3. find the first des¢riptor id in desc_id_group in DT (call it cur_desc);
4, min := DT(cur_desc).no_clus;
3. mindesc := current descriptor id;
6. do begin /* do for all ids in éesc_id_group.*/
7. find pext descgiptor id in desc_id_group in DT . .
8. if DT(cur_desc).no_clus < min 7* Bee if the current one is min */
9. then Pegin /¥ yes, make the current one min *
10. min := DT(cur_desc).no_clus;
i%. ,mindesc := current desCriptor id;
L] n
13. until(no more ids in desc_id_group);
14, return(mxndescs;
15, end proc;

N
NPT —

ettt

[P VLR WY Y

‘ PAGE 145 |

1. proc INSERT_NEW_CLUSTER(jinput : desc_id_set, cluster_id,

output : cdiptr);
l /* This procedure inserts a new cluster into ECDT gnd.updates */
[* all the other tables accordingly. It returns a pointer to */
/* this new entry. *
l 2, sort desc_id_set in ascending order of descriptor ids;
/* update ECDT table */ .
3. create a new ECDT entry (call it new_cdt);
4. new_cdt.cluster_id := cluster_id; . .
5. new_cdt.no_desc := no of descriptors in desc_id_set;
5. form a linked list of descriptor ids in desc_id_set; . .
7. update new_cdt.descptr to point to the linked 1ist of descriptor ids;
8. add new _cdt to the ECDT list;
/* update DICM */)))
' 9. create DICM entries for all descriptor ids_in
desc_id_set (call it new_dtcm);
10. set cdtptr of all new _dtcm”s to point to the new_cdt entry; :
11. add new_dtcm entries to their respective DTCM lists for each s
descriptor 1id; J
/* update DT table */ '

12, update cluster counts (no_clus)} of DT entries for the
descriptor ids 1in desc_1id_set;

13. end proc;

. proc CREATE(output : cdtptr); J
7* This procedure creates a new ECDT and returns a pointer to it */ e
create a new instance of ECDT; .] 1
insert the database name together with the BOlntet to the
new ECDT into the index table for ECDT’s;
. return the pointer to the new ECDT;
. end proc;

——

wnH WM e
Y

L S N

